Quantum cohomology of projective bundles
We construct an I-function of the projective bundle P(V) associated with a not necessarily split vector bundle V\to B as a Fourier transform of the S^1-equivariant J-function of the total space of V and show that it lies on the Givental Lagrangian cone of P(V). Using this result, we show that the qu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct an I-function of the projective bundle P(V) associated with a not necessarily split vector bundle V\to B as a Fourier transform of the S^1-equivariant J-function of the total space of V and show that it lies on the Givental Lagrangian cone of P(V). Using this result, we show that the quantum cohomology D-module of P(V) splits into the direct sum of the quantum cohomology D-modules of the base space B. This has applications to the semisimplicity of big quantum cohomology. |
---|---|
ISSN: | 2331-8422 |