Superrigidity for dense subgroups of lie groups and their actions on homogeneous spaces
An essentially free group action Γ ↷ ( X , μ ) is called W ∗ -superrigid if the crossed product von Neumann algebra L ∞ ( X ) ⋊ Γ completely remembers the group Γ and its action on ( X , μ ) . We prove W ∗ -superrigidity for a class of infinite measure preserving actions, in particular for natural d...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2023-08, Vol.386 (3-4), p.2015-2059 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2059 |
---|---|
container_issue | 3-4 |
container_start_page | 2015 |
container_title | Mathematische annalen |
container_volume | 386 |
creator | Drimbe, Daniel Vaes, Stefaan |
description | An essentially free group action
Γ
↷
(
X
,
μ
)
is called W
∗
-superrigid if the crossed product von Neumann algebra
L
∞
(
X
)
⋊
Γ
completely remembers the group
Γ
and its action on
(
X
,
μ
)
. We prove W
∗
-superrigidity for a class of infinite measure preserving actions, in particular for natural dense subgroups of isometries of the hyperbolic plane. The main tool is a new cocycle superrigidity theorem for dense subgroups of Lie groups acting by translation. We also provide numerous countable type II
1
equivalence relations that cannot be implemented by an essentially free action of a group, both of geometric nature and through a wreath product construction. |
doi_str_mv | 10.1007/s00208-022-02437-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2834741687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834741687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-c7ba219a3aa962c49934d5d265802924dde055a4bd48b2efa170fc7588b02d083</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz9HJq0mPsviCBQ8qHkPapN0uu01N2sN-e6Nd8OZhGIb_Y-CH0DWFWwqg7hIAA02AsTyCK0JP0IIKzgjVoE7RIuuSSM3pObpIaQsAHEAu0OfbNPgYu7Zz3XjATYjY-T55nKaqjWEaEg4N3nUeHy_bOzxufBexrccu9Fnv8SbsQ-t7H6aE02Brny7RWWN3yV8d9xJ9PD68r57J-vXpZXW_JjWnYiS1qiyjpeXWlgWrRVly4aRjhdTASiac8yClFZUTumK-sVRBUyupdQXMgeZLdDP3DjF8TT6NZhum2OeXhmkulKCFVtnFZlcdQ0rRN2aI3d7Gg6FgfgCaGaDJAM0vQENziM-hlM196-Nf9T-pbx1oc6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834741687</pqid></control><display><type>article</type><title>Superrigidity for dense subgroups of lie groups and their actions on homogeneous spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Drimbe, Daniel ; Vaes, Stefaan</creator><creatorcontrib>Drimbe, Daniel ; Vaes, Stefaan</creatorcontrib><description>An essentially free group action
Γ
↷
(
X
,
μ
)
is called W
∗
-superrigid if the crossed product von Neumann algebra
L
∞
(
X
)
⋊
Γ
completely remembers the group
Γ
and its action on
(
X
,
μ
)
. We prove W
∗
-superrigidity for a class of infinite measure preserving actions, in particular for natural dense subgroups of isometries of the hyperbolic plane. The main tool is a new cocycle superrigidity theorem for dense subgroups of Lie groups acting by translation. We also provide numerous countable type II
1
equivalence relations that cannot be implemented by an essentially free action of a group, both of geometric nature and through a wreath product construction.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-022-02437-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Lie groups ; Mathematics ; Mathematics and Statistics ; Subgroups</subject><ispartof>Mathematische annalen, 2023-08, Vol.386 (3-4), p.2015-2059</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-c7ba219a3aa962c49934d5d265802924dde055a4bd48b2efa170fc7588b02d083</cites><orcidid>0000-0001-6747-345X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-022-02437-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-022-02437-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Drimbe, Daniel</creatorcontrib><creatorcontrib>Vaes, Stefaan</creatorcontrib><title>Superrigidity for dense subgroups of lie groups and their actions on homogeneous spaces</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>An essentially free group action
Γ
↷
(
X
,
μ
)
is called W
∗
-superrigid if the crossed product von Neumann algebra
L
∞
(
X
)
⋊
Γ
completely remembers the group
Γ
and its action on
(
X
,
μ
)
. We prove W
∗
-superrigidity for a class of infinite measure preserving actions, in particular for natural dense subgroups of isometries of the hyperbolic plane. The main tool is a new cocycle superrigidity theorem for dense subgroups of Lie groups acting by translation. We also provide numerous countable type II
1
equivalence relations that cannot be implemented by an essentially free action of a group, both of geometric nature and through a wreath product construction.</description><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subgroups</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz9HJq0mPsviCBQ8qHkPapN0uu01N2sN-e6Nd8OZhGIb_Y-CH0DWFWwqg7hIAA02AsTyCK0JP0IIKzgjVoE7RIuuSSM3pObpIaQsAHEAu0OfbNPgYu7Zz3XjATYjY-T55nKaqjWEaEg4N3nUeHy_bOzxufBexrccu9Fnv8SbsQ-t7H6aE02Brny7RWWN3yV8d9xJ9PD68r57J-vXpZXW_JjWnYiS1qiyjpeXWlgWrRVly4aRjhdTASiac8yClFZUTumK-sVRBUyupdQXMgeZLdDP3DjF8TT6NZhum2OeXhmkulKCFVtnFZlcdQ0rRN2aI3d7Gg6FgfgCaGaDJAM0vQENziM-hlM196-Nf9T-pbx1oc6g</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Drimbe, Daniel</creator><creator>Vaes, Stefaan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6747-345X</orcidid></search><sort><creationdate>20230801</creationdate><title>Superrigidity for dense subgroups of lie groups and their actions on homogeneous spaces</title><author>Drimbe, Daniel ; Vaes, Stefaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-c7ba219a3aa962c49934d5d265802924dde055a4bd48b2efa170fc7588b02d083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drimbe, Daniel</creatorcontrib><creatorcontrib>Vaes, Stefaan</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drimbe, Daniel</au><au>Vaes, Stefaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superrigidity for dense subgroups of lie groups and their actions on homogeneous spaces</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>386</volume><issue>3-4</issue><spage>2015</spage><epage>2059</epage><pages>2015-2059</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>An essentially free group action
Γ
↷
(
X
,
μ
)
is called W
∗
-superrigid if the crossed product von Neumann algebra
L
∞
(
X
)
⋊
Γ
completely remembers the group
Γ
and its action on
(
X
,
μ
)
. We prove W
∗
-superrigidity for a class of infinite measure preserving actions, in particular for natural dense subgroups of isometries of the hyperbolic plane. The main tool is a new cocycle superrigidity theorem for dense subgroups of Lie groups acting by translation. We also provide numerous countable type II
1
equivalence relations that cannot be implemented by an essentially free action of a group, both of geometric nature and through a wreath product construction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-022-02437-1</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0001-6747-345X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2023-08, Vol.386 (3-4), p.2015-2059 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2834741687 |
source | Springer Nature - Complete Springer Journals |
subjects | Lie groups Mathematics Mathematics and Statistics Subgroups |
title | Superrigidity for dense subgroups of lie groups and their actions on homogeneous spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superrigidity%20for%20dense%20subgroups%20of%20lie%20groups%20and%20their%20actions%20on%20homogeneous%20spaces&rft.jtitle=Mathematische%20annalen&rft.au=Drimbe,%20Daniel&rft.date=2023-08-01&rft.volume=386&rft.issue=3-4&rft.spage=2015&rft.epage=2059&rft.pages=2015-2059&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-022-02437-1&rft_dat=%3Cproquest_cross%3E2834741687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834741687&rft_id=info:pmid/&rfr_iscdi=true |