Superrigidity for dense subgroups of lie groups and their actions on homogeneous spaces
An essentially free group action Γ ↷ ( X , μ ) is called W ∗ -superrigid if the crossed product von Neumann algebra L ∞ ( X ) ⋊ Γ completely remembers the group Γ and its action on ( X , μ ) . We prove W ∗ -superrigidity for a class of infinite measure preserving actions, in particular for natural d...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2023-08, Vol.386 (3-4), p.2015-2059 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An essentially free group action
Γ
↷
(
X
,
μ
)
is called W
∗
-superrigid if the crossed product von Neumann algebra
L
∞
(
X
)
⋊
Γ
completely remembers the group
Γ
and its action on
(
X
,
μ
)
. We prove W
∗
-superrigidity for a class of infinite measure preserving actions, in particular for natural dense subgroups of isometries of the hyperbolic plane. The main tool is a new cocycle superrigidity theorem for dense subgroups of Lie groups acting by translation. We also provide numerous countable type II
1
equivalence relations that cannot be implemented by an essentially free action of a group, both of geometric nature and through a wreath product construction. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-022-02437-1 |