The Goldman bracket characterizes homeomorphisms between non-compact surfaces
We show that a homotopy equivalence between two non-compact orientable surfaces is homotopic to a homeomorphism if and only if it preserves the Goldman bracket, provided our surfaces are neither the plane nor the punctured plane.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a homotopy equivalence between two non-compact orientable surfaces is homotopic to a homeomorphism if and only if it preserves the Goldman bracket, provided our surfaces are neither the plane nor the punctured plane. |
---|---|
ISSN: | 2331-8422 |