The Goldman bracket characterizes homeomorphisms between non-compact surfaces

We show that a homotopy equivalence between two non-compact orientable surfaces is homotopic to a homeomorphism if and only if it preserves the Goldman bracket, provided our surfaces are neither the plane nor the punctured plane.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Das, Sumanta, Gadgil, Siddhartha, Nair, Ajay Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a homotopy equivalence between two non-compact orientable surfaces is homotopic to a homeomorphism if and only if it preserves the Goldman bracket, provided our surfaces are neither the plane nor the punctured plane.
ISSN:2331-8422