Pulse shape measurements for neutron/gamma discrimination using the TOFPET2 ASIC

Many highly pixelated organic scintillator detection systems would benefit from independent readout of each scintillator pixel. Recent advances in Silicon Photomultiplier (SiPM) technology makes this goal feasible, however the data acquisition from potentially hundreds or thousands of channels requi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2023-07, Vol.18 (7), p.P07015
Hauptverfasser: Weinfurther, K., Marleau, P., Sweany, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many highly pixelated organic scintillator detection systems would benefit from independent readout of each scintillator pixel. Recent advances in Silicon Photomultiplier (SiPM) technology makes this goal feasible, however the data acquisition from potentially hundreds or thousands of channels requires a low-cost and compact solution. For pixelated neutron detection with organic scintillators, the capability to distinguish between neutron and gamma interactions using Pulse Shape Discrimination (PSD) is required along with pulse charge and time of arrival. The TOFPET2 ASIC from PETsys Electronics is a 64-channel readout chip providing pulse time and charge integration measurements from SiPMs, and is specifically designed for time-of-flight positron-emission tomography. Using an 8 × 8 array of 6 mm × 6 mm J-series SiPMs from SensL/OnSemi (ArrayJ-60035-64P-PCB), we have studied the energy and PSD performance of the TOFPET2 ASIC using a 4 × 4 array of 6 mm × 6 mm × 30 mm  trans -Stilbene crystals from Inrad Optics and a custom SiPM routing board from PETsys Electronics. Using a time-over-threshold method, we measure a maximum PSD figure-of-merit of approximately 1.2 at 478 keV (the Compton edge of 662 keV) for a J-series SiPM operating at an over-voltage of 3V.
ISSN:1748-0221
1748-0221
DOI:10.1088/1748-0221/18/07/P07015