Maximal Fractional Cross-Intersecting Families
Given an irreducible fraction c d ∈ [ 0 , 1 ] , a pair ( A , B ) is called a c d -cross-intersecting pair of 2 [ n ] if A , B are two families of subsets of [ n ] such that for every pair A ∈ A and B ∈ B , | A ∩ B | = c d | B | . Mathew et al. (Graphs Comb 37:471–484, 2019) proved that | A | | B | ≤...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2023-08, Vol.39 (4), Article 81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an irreducible fraction
c
d
∈
[
0
,
1
]
, a pair
(
A
,
B
)
is called a
c
d
-cross-intersecting pair of
2
[
n
]
if
A
,
B
are two families of subsets of [
n
] such that for every pair
A
∈
A
and
B
∈
B
,
|
A
∩
B
|
=
c
d
|
B
|
. Mathew et al. (Graphs Comb 37:471–484, 2019) proved that
|
A
|
|
B
|
≤
2
n
if
(
A
,
B
)
is a
c
d
-cross-intersecting pair of
2
[
n
]
and characterized all the pairs
(
A
,
B
)
with
|
A
|
|
B
|
=
2
n
, such a pair also is called a maximal
c
d
-cross-intersecting pair of
2
[
n
]
, when
c
d
∈
{
0
,
1
2
,
1
}
. In this note, we characterize all the maximal
c
d
-cross-intersecting pairs
(
A
,
B
)
when
0
<
c
d
<
1
and
c
d
≠
1
2
, this result answers a question proposed by Mathew et al. (2019). |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-023-02674-4 |