Maximal Fractional Cross-Intersecting Families

Given an irreducible fraction c d ∈ [ 0 , 1 ] , a pair ( A , B ) is called a c d -cross-intersecting pair of 2 [ n ] if A , B are two families of subsets of [ n ] such that for every pair A ∈ A and B ∈ B , | A ∩ B | = c d | B | . Mathew et al. (Graphs Comb 37:471–484, 2019) proved that | A | | B | ≤...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2023-08, Vol.39 (4), Article 81
Hauptverfasser: Wang, Hongkui, Hou, Xinmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an irreducible fraction c d ∈ [ 0 , 1 ] , a pair ( A , B ) is called a c d -cross-intersecting pair of 2 [ n ] if A , B are two families of subsets of [ n ] such that for every pair A ∈ A and B ∈ B , | A ∩ B | = c d | B | . Mathew et al. (Graphs Comb 37:471–484, 2019) proved that | A | | B | ≤ 2 n if ( A , B ) is a c d -cross-intersecting pair of 2 [ n ] and characterized all the pairs ( A , B ) with | A | | B | = 2 n , such a pair also is called a maximal c d -cross-intersecting pair of 2 [ n ] , when c d ∈ { 0 , 1 2 , 1 } . In this note, we characterize all the maximal c d -cross-intersecting pairs ( A , B ) when 0 < c d < 1 and c d ≠ 1 2 , this result answers a question proposed by Mathew et al. (2019).
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-023-02674-4