A Serre spectral sequence for the moduli space of tropical curves
We construct, for all \(g\geq 2\) and \(n\geq 0\), a spectral sequence of rational \(S_n\)-representations which computes the \(S_n\)-equivariant reduced rational cohomology of the tropical moduli spaces of curves \(\Delta_{g,n}\) in terms of compactly supported cohomology groups of configuration sp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct, for all \(g\geq 2\) and \(n\geq 0\), a spectral sequence of rational \(S_n\)-representations which computes the \(S_n\)-equivariant reduced rational cohomology of the tropical moduli spaces of curves \(\Delta_{g,n}\) in terms of compactly supported cohomology groups of configuration spaces of \(n\) points on graphs of genus \(g\). Using the canonical \(S_n\)-equivariant isomorphisms \(\widetilde{H}^{i-1}(\Delta_{g,n};\mathbb{Q}) \cong W_0 H^i_c(\mathcal{M}_{g,n};\mathbb{Q})\), we calculate the weight \(0\), compactly supported rational cohomology of the moduli spaces \(\mathcal{M}_{g,n}\) in the range \(g=3\) and \(n\leq 9\), with partial computations available for \(n\leq 13\). |
---|---|
ISSN: | 2331-8422 |