One functional property of the \(\varsigma\)-function of Riemann

We prove that if a function \(\theta \left( z \right)=\int\limits_{1}^{\infty }{\frac{\pi \left( t \right)\,-Li\left( t \right)}{{{t}^{z+1}}}dt}\,,\) which is holomorphic in \(\left\{ \operatorname{Re}z>1 \right\}\) holomorphically extends to some simply connected domain \(G\subset \left\{ \opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
1. Verfasser: Sadullaev, Azimbay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if a function \(\theta \left( z \right)=\int\limits_{1}^{\infty }{\frac{\pi \left( t \right)\,-Li\left( t \right)}{{{t}^{z+1}}}dt}\,,\) which is holomorphic in \(\left\{ \operatorname{Re}z>1 \right\}\) holomorphically extends to some simply connected domain \(G\subset \left\{ \operatorname{Re}z>\frac{1}{2} \right\}\), then the \(\varsigma \left( z \right)-\)function of Riemann has no zeros in this domain, \(\varsigma \left( z \right)\ne 0\,\,\,\forall z\in G.\) As a consequence, it turns out that if the function \(\theta \left( z \right)\)is holomorphic in \(\operatorname{Re}z>\frac{1}{2},\) then the Riemann hypothesis has a positive solution.
ISSN:2331-8422