RobustL2S: Speaker-Specific Lip-to-Speech Synthesis exploiting Self-Supervised Representations
Significant progress has been made in speaker dependent Lip-to-Speech synthesis, which aims to generate speech from silent videos of talking faces. Current state-of-the-art approaches primarily employ non-autoregressive sequence-to-sequence architectures to directly predict mel-spectrograms or audio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Significant progress has been made in speaker dependent Lip-to-Speech synthesis, which aims to generate speech from silent videos of talking faces. Current state-of-the-art approaches primarily employ non-autoregressive sequence-to-sequence architectures to directly predict mel-spectrograms or audio waveforms from lip representations. We hypothesize that the direct mel-prediction hampers training/model efficiency due to the entanglement of speech content with ambient information and speaker characteristics. To this end, we propose RobustL2S, a modularized framework for Lip-to-Speech synthesis. First, a non-autoregressive sequence-to-sequence model maps self-supervised visual features to a representation of disentangled speech content. A vocoder then converts the speech features into raw waveforms. Extensive evaluations confirm the effectiveness of our setup, achieving state-of-the-art performance on the unconstrained Lip2Wav dataset and the constrained GRID and TCD-TIMIT datasets. Speech samples from RobustL2S can be found at https://neha-sherin.github.io/RobustL2S/ |
---|---|
ISSN: | 2331-8422 |