The Number of Ribbon Tilings for Strips
First, we consider order-\(n\) ribbon tilings of an \(M\)-by-\(N\) rectangle \(R_{M,N}\) where \(M\) and \(N\) are much larger than \(n\). We prove the existence of the growth rate \(\gamma_n\) of the number of tilings and show that \(\gamma_n \leq (n-1) \ln 2\). Then, we study a rectangle \(R_{M,N}...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | First, we consider order-\(n\) ribbon tilings of an \(M\)-by-\(N\) rectangle \(R_{M,N}\) where \(M\) and \(N\) are much larger than \(n\). We prove the existence of the growth rate \(\gamma_n\) of the number of tilings and show that \(\gamma_n \leq (n-1) \ln 2\). Then, we study a rectangle \(R_{M,N}\) with fixed width \(M=n\), called a strip. We derive lower and upper bounds on the growth rate \(\mu_n\) for strips as \( \ln n - 1 + o(1) \leq \mu_n \leq \ln n \). Besides, we construct a recursive system which enables us to enumerate the order-\(n\) ribbon tilings of a strip for all \(n \leq 8\) and calculate the corresponding generating functions. |
---|---|
ISSN: | 2331-8422 |