Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design
Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐bas...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-07, Vol.135 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 135 |
creator | Xie, Chunlin Liu, Shengfang Zhang, Wenxu Ji, Huimin Chu, Shengqi Zhang, Qi Tang, Yougen Wang, Haiyan |
description | Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range.
A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution. |
doi_str_mv | 10.1002/ange.202304259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832639521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832639521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1179-b82f3de79fc82dd5fd0819569b607f79a34e3f0b6fb7a28211e094e939492bfa3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofSRwvSykPqYBUWiGxsZxkXFylSbEdoe74BL6RLyGlCJasZnPvmZmD0CklA0oIO9f1AgaMME5ilsg91KMJoxEXidhHPULiOMpYLA_RkfdLQkjKhOwhmDZ56wPWdYmfbAl4Bqs1OB1aB5_vH9MtFD_busB3EHSFL3QI4Cx4_GbDC57X9rUFPK6gCK6pNgG-SY9t7kMHAXwJ3i7qY3RgdOXh5Gf20fxqPBvdRJOH69vRcBIVlAoZ5RkzvAQhTZGxskxMSTIqk1TmKRFGSM1j4IbkqcmFZhmjFIiMQXIZS5YbzfvobMddu6a7ywe1bFpXdysVyzhLueyUdKnBLlW4xnsHRq2dXWm3UZSorUq1_Vr9quwKcld4sxVs_kmr4f31-K_7BdLReWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832639521</pqid></control><display><type>article</type><title>Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Xie, Chunlin ; Liu, Shengfang ; Zhang, Wenxu ; Ji, Huimin ; Chu, Shengqi ; Zhang, Qi ; Tang, Yougen ; Wang, Haiyan</creator><creatorcontrib>Xie, Chunlin ; Liu, Shengfang ; Zhang, Wenxu ; Ji, Huimin ; Chu, Shengqi ; Zhang, Qi ; Tang, Yougen ; Wang, Haiyan</creatorcontrib><description>Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range.
A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202304259</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Batteries ; Chemistry ; Design ; Discharge ; Efficiency ; Electrolyte ; Electrolytes ; Electrolytic cells ; Energy storage ; Epitaxial growth ; Freezing ; Freezing point ; Ion distribution ; Melting points ; Metals ; Nucleation ; Rechargeable batteries ; Robustness ; Substrate ; Substrates ; Temperature tolerance ; Thermal stability ; Weak Solvent Structure ; Wide Temperature Range ; Zinc ; Zinc Metal Anode</subject><ispartof>Angewandte Chemie, 2023-07, Vol.135 (28), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1179-b82f3de79fc82dd5fd0819569b607f79a34e3f0b6fb7a28211e094e939492bfa3</cites><orcidid>0000-0003-4206-0215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202304259$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202304259$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Xie, Chunlin</creatorcontrib><creatorcontrib>Liu, Shengfang</creatorcontrib><creatorcontrib>Zhang, Wenxu</creatorcontrib><creatorcontrib>Ji, Huimin</creatorcontrib><creatorcontrib>Chu, Shengqi</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><title>Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design</title><title>Angewandte Chemie</title><description>Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range.
A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution.</description><subject>Aluminum</subject><subject>Batteries</subject><subject>Chemistry</subject><subject>Design</subject><subject>Discharge</subject><subject>Efficiency</subject><subject>Electrolyte</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Epitaxial growth</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>Ion distribution</subject><subject>Melting points</subject><subject>Metals</subject><subject>Nucleation</subject><subject>Rechargeable batteries</subject><subject>Robustness</subject><subject>Substrate</subject><subject>Substrates</subject><subject>Temperature tolerance</subject><subject>Thermal stability</subject><subject>Weak Solvent Structure</subject><subject>Wide Temperature Range</subject><subject>Zinc</subject><subject>Zinc Metal Anode</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofSRwvSykPqYBUWiGxsZxkXFylSbEdoe74BL6RLyGlCJasZnPvmZmD0CklA0oIO9f1AgaMME5ilsg91KMJoxEXidhHPULiOMpYLA_RkfdLQkjKhOwhmDZ56wPWdYmfbAl4Bqs1OB1aB5_vH9MtFD_busB3EHSFL3QI4Cx4_GbDC57X9rUFPK6gCK6pNgG-SY9t7kMHAXwJ3i7qY3RgdOXh5Gf20fxqPBvdRJOH69vRcBIVlAoZ5RkzvAQhTZGxskxMSTIqk1TmKRFGSM1j4IbkqcmFZhmjFIiMQXIZS5YbzfvobMddu6a7ywe1bFpXdysVyzhLueyUdKnBLlW4xnsHRq2dXWm3UZSorUq1_Vr9quwKcld4sxVs_kmr4f31-K_7BdLReWg</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Xie, Chunlin</creator><creator>Liu, Shengfang</creator><creator>Zhang, Wenxu</creator><creator>Ji, Huimin</creator><creator>Chu, Shengqi</creator><creator>Zhang, Qi</creator><creator>Tang, Yougen</creator><creator>Wang, Haiyan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4206-0215</orcidid></search><sort><creationdate>20230710</creationdate><title>Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design</title><author>Xie, Chunlin ; Liu, Shengfang ; Zhang, Wenxu ; Ji, Huimin ; Chu, Shengqi ; Zhang, Qi ; Tang, Yougen ; Wang, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1179-b82f3de79fc82dd5fd0819569b607f79a34e3f0b6fb7a28211e094e939492bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Batteries</topic><topic>Chemistry</topic><topic>Design</topic><topic>Discharge</topic><topic>Efficiency</topic><topic>Electrolyte</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Epitaxial growth</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>Ion distribution</topic><topic>Melting points</topic><topic>Metals</topic><topic>Nucleation</topic><topic>Rechargeable batteries</topic><topic>Robustness</topic><topic>Substrate</topic><topic>Substrates</topic><topic>Temperature tolerance</topic><topic>Thermal stability</topic><topic>Weak Solvent Structure</topic><topic>Wide Temperature Range</topic><topic>Zinc</topic><topic>Zinc Metal Anode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Chunlin</creatorcontrib><creatorcontrib>Liu, Shengfang</creatorcontrib><creatorcontrib>Zhang, Wenxu</creatorcontrib><creatorcontrib>Ji, Huimin</creatorcontrib><creatorcontrib>Chu, Shengqi</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Chunlin</au><au>Liu, Shengfang</au><au>Zhang, Wenxu</au><au>Ji, Huimin</au><au>Chu, Shengqi</au><au>Zhang, Qi</au><au>Tang, Yougen</au><au>Wang, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-07-10</date><risdate>2023</risdate><volume>135</volume><issue>28</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range.
A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202304259</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4206-0215</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2023-07, Vol.135 (28), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2832639521 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Aluminum Batteries Chemistry Design Discharge Efficiency Electrolyte Electrolytes Electrolytic cells Energy storage Epitaxial growth Freezing Freezing point Ion distribution Melting points Metals Nucleation Rechargeable batteries Robustness Substrate Substrates Temperature tolerance Thermal stability Weak Solvent Structure Wide Temperature Range Zinc Zinc Metal Anode |
title | Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20Wide%20Temperature%E2%80%90Range%20Zinc%20Metal%20Batteries%20with%20Unique%20Electrolyte%20and%20Substrate%20Design&rft.jtitle=Angewandte%20Chemie&rft.au=Xie,%20Chunlin&rft.date=2023-07-10&rft.volume=135&rft.issue=28&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202304259&rft_dat=%3Cproquest_cross%3E2832639521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832639521&rft_id=info:pmid/&rfr_iscdi=true |