Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design

Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-07, Vol.135 (28), p.n/a
Hauptverfasser: Xie, Chunlin, Liu, Shengfang, Zhang, Wenxu, Ji, Huimin, Chu, Shengqi, Zhang, Qi, Tang, Yougen, Wang, Haiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Xie, Chunlin
Liu, Shengfang
Zhang, Wenxu
Ji, Huimin
Chu, Shengqi
Zhang, Qi
Tang, Yougen
Wang, Haiyan
description Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range. A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution.
doi_str_mv 10.1002/ange.202304259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832639521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832639521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1179-b82f3de79fc82dd5fd0819569b607f79a34e3f0b6fb7a28211e094e939492bfa3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofSRwvSykPqYBUWiGxsZxkXFylSbEdoe74BL6RLyGlCJasZnPvmZmD0CklA0oIO9f1AgaMME5ilsg91KMJoxEXidhHPULiOMpYLA_RkfdLQkjKhOwhmDZ56wPWdYmfbAl4Bqs1OB1aB5_vH9MtFD_busB3EHSFL3QI4Cx4_GbDC57X9rUFPK6gCK6pNgG-SY9t7kMHAXwJ3i7qY3RgdOXh5Gf20fxqPBvdRJOH69vRcBIVlAoZ5RkzvAQhTZGxskxMSTIqk1TmKRFGSM1j4IbkqcmFZhmjFIiMQXIZS5YbzfvobMddu6a7ywe1bFpXdysVyzhLueyUdKnBLlW4xnsHRq2dXWm3UZSorUq1_Vr9quwKcld4sxVs_kmr4f31-K_7BdLReWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832639521</pqid></control><display><type>article</type><title>Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Xie, Chunlin ; Liu, Shengfang ; Zhang, Wenxu ; Ji, Huimin ; Chu, Shengqi ; Zhang, Qi ; Tang, Yougen ; Wang, Haiyan</creator><creatorcontrib>Xie, Chunlin ; Liu, Shengfang ; Zhang, Wenxu ; Ji, Huimin ; Chu, Shengqi ; Zhang, Qi ; Tang, Yougen ; Wang, Haiyan</creatorcontrib><description>Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range. A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202304259</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Batteries ; Chemistry ; Design ; Discharge ; Efficiency ; Electrolyte ; Electrolytes ; Electrolytic cells ; Energy storage ; Epitaxial growth ; Freezing ; Freezing point ; Ion distribution ; Melting points ; Metals ; Nucleation ; Rechargeable batteries ; Robustness ; Substrate ; Substrates ; Temperature tolerance ; Thermal stability ; Weak Solvent Structure ; Wide Temperature Range ; Zinc ; Zinc Metal Anode</subject><ispartof>Angewandte Chemie, 2023-07, Vol.135 (28), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1179-b82f3de79fc82dd5fd0819569b607f79a34e3f0b6fb7a28211e094e939492bfa3</cites><orcidid>0000-0003-4206-0215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202304259$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202304259$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Xie, Chunlin</creatorcontrib><creatorcontrib>Liu, Shengfang</creatorcontrib><creatorcontrib>Zhang, Wenxu</creatorcontrib><creatorcontrib>Ji, Huimin</creatorcontrib><creatorcontrib>Chu, Shengqi</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><title>Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design</title><title>Angewandte Chemie</title><description>Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range. A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution.</description><subject>Aluminum</subject><subject>Batteries</subject><subject>Chemistry</subject><subject>Design</subject><subject>Discharge</subject><subject>Efficiency</subject><subject>Electrolyte</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Epitaxial growth</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>Ion distribution</subject><subject>Melting points</subject><subject>Metals</subject><subject>Nucleation</subject><subject>Rechargeable batteries</subject><subject>Robustness</subject><subject>Substrate</subject><subject>Substrates</subject><subject>Temperature tolerance</subject><subject>Thermal stability</subject><subject>Weak Solvent Structure</subject><subject>Wide Temperature Range</subject><subject>Zinc</subject><subject>Zinc Metal Anode</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofSRwvSykPqYBUWiGxsZxkXFylSbEdoe74BL6RLyGlCJasZnPvmZmD0CklA0oIO9f1AgaMME5ilsg91KMJoxEXidhHPULiOMpYLA_RkfdLQkjKhOwhmDZ56wPWdYmfbAl4Bqs1OB1aB5_vH9MtFD_busB3EHSFL3QI4Cx4_GbDC57X9rUFPK6gCK6pNgG-SY9t7kMHAXwJ3i7qY3RgdOXh5Gf20fxqPBvdRJOH69vRcBIVlAoZ5RkzvAQhTZGxskxMSTIqk1TmKRFGSM1j4IbkqcmFZhmjFIiMQXIZS5YbzfvobMddu6a7ywe1bFpXdysVyzhLueyUdKnBLlW4xnsHRq2dXWm3UZSorUq1_Vr9quwKcld4sxVs_kmr4f31-K_7BdLReWg</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Xie, Chunlin</creator><creator>Liu, Shengfang</creator><creator>Zhang, Wenxu</creator><creator>Ji, Huimin</creator><creator>Chu, Shengqi</creator><creator>Zhang, Qi</creator><creator>Tang, Yougen</creator><creator>Wang, Haiyan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4206-0215</orcidid></search><sort><creationdate>20230710</creationdate><title>Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design</title><author>Xie, Chunlin ; Liu, Shengfang ; Zhang, Wenxu ; Ji, Huimin ; Chu, Shengqi ; Zhang, Qi ; Tang, Yougen ; Wang, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1179-b82f3de79fc82dd5fd0819569b607f79a34e3f0b6fb7a28211e094e939492bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Batteries</topic><topic>Chemistry</topic><topic>Design</topic><topic>Discharge</topic><topic>Efficiency</topic><topic>Electrolyte</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Epitaxial growth</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>Ion distribution</topic><topic>Melting points</topic><topic>Metals</topic><topic>Nucleation</topic><topic>Rechargeable batteries</topic><topic>Robustness</topic><topic>Substrate</topic><topic>Substrates</topic><topic>Temperature tolerance</topic><topic>Thermal stability</topic><topic>Weak Solvent Structure</topic><topic>Wide Temperature Range</topic><topic>Zinc</topic><topic>Zinc Metal Anode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Chunlin</creatorcontrib><creatorcontrib>Liu, Shengfang</creatorcontrib><creatorcontrib>Zhang, Wenxu</creatorcontrib><creatorcontrib>Ji, Huimin</creatorcontrib><creatorcontrib>Chu, Shengqi</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Chunlin</au><au>Liu, Shengfang</au><au>Zhang, Wenxu</au><au>Ji, Huimin</au><au>Chu, Shengqi</au><au>Zhang, Qi</au><au>Tang, Yougen</au><au>Wang, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-07-10</date><risdate>2023</risdate><volume>135</volume><issue>28</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range. A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202304259</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4206-0215</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-07, Vol.135 (28), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2832639521
source Wiley Online Library - AutoHoldings Journals
subjects Aluminum
Batteries
Chemistry
Design
Discharge
Efficiency
Electrolyte
Electrolytes
Electrolytic cells
Energy storage
Epitaxial growth
Freezing
Freezing point
Ion distribution
Melting points
Metals
Nucleation
Rechargeable batteries
Robustness
Substrate
Substrates
Temperature tolerance
Thermal stability
Weak Solvent Structure
Wide Temperature Range
Zinc
Zinc Metal Anode
title Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20Wide%20Temperature%E2%80%90Range%20Zinc%20Metal%20Batteries%20with%20Unique%20Electrolyte%20and%20Substrate%20Design&rft.jtitle=Angewandte%20Chemie&rft.au=Xie,%20Chunlin&rft.date=2023-07-10&rft.volume=135&rft.issue=28&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202304259&rft_dat=%3Cproquest_cross%3E2832639521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832639521&rft_id=info:pmid/&rfr_iscdi=true