Robust and Wide Temperature‐Range Zinc Metal Batteries with Unique Electrolyte and Substrate Design

Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-07, Vol.135 (28), p.n/a
Hauptverfasser: Xie, Chunlin, Liu, Shengfang, Zhang, Wenxu, Ji, Huimin, Chu, Shengqi, Zhang, Qi, Tang, Yougen, Wang, Haiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rechargeable zinc metal batteries are promising for large‐scale energy storage. However, their practical application is limited by harsh issues such as uncontrollable dendrite growth, low Coulombic efficiency, and poor temperature tolerance. Herein, a unique design strategy using γ‐valerolactone‐based electrolyte and nanocarbon‐coated aluminum substrate was reported to solve the above problems. The electrolyte with extremely low freezing point and high thermal stability enables the symmetric cells with long cycle life over a wide temperature range (−50 °C to 80 °C) due to its ability to regulate zinc nucleation and preferential epitaxial growth. Besides, the nanocarbon‐coated aluminum substrate can also promote a higher Coulombic efficiency over a wide temperature range in contrast to the low Coulombic efficiency of copper substrates with significant irreversible alloying reactions because this unique substrate with excellent chemical stabilization can homogenize the interfacial electron/ion distribution. The optimized zinc metal capacitors can operate stably under various temperature conditions (2000 cycles at 30 °C with 66 % depth of discharge and 1200 cycles at 80 °C with 50 % depth of discharge). This unique electrolyte and substrate design strategy achieves a robust zinc metal battery over a wide temperature range. A practical zinc metal battery with high coulombic efficiency and long cycle life over a wide temperature range was constructed by using a weakly solvating γ‐valerolactone‐based electrolyte and a nanocarbon‐coated aluminum substrate with chemical stability and good homogenized electron/ion distribution.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202304259