The Structure of the Spin^h Bordism Spectrum

Spin\(^h\) manifolds are the quaternionic analogue to Spin\(^c\) manifolds. We compute the spin\(^h\) bordism groups at the prime 2 by proving a structure theorem for the cohomology of the spin\(^h\) bordism spectrum \(\mathrm{MSpin}^h\) as a module over the mod 2 Steenrod algebra. This provides a 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
1. Verfasser: Mills, Keith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spin\(^h\) manifolds are the quaternionic analogue to Spin\(^c\) manifolds. We compute the spin\(^h\) bordism groups at the prime 2 by proving a structure theorem for the cohomology of the spin\(^h\) bordism spectrum \(\mathrm{MSpin}^h\) as a module over the mod 2 Steenrod algebra. This provides a 2-local splitting of \(\mathrm{MSpin}^h\) as a wedge sum of familiar spectra. We also compute the decomposition of \(H^*(\mathrm{MSpin}^h;\mathbb{Z}/2\mathbb{Z})\) explicitly in degrees up through 30 via a counting process.
ISSN:2331-8422