The Structure of the Spin^h Bordism Spectrum
Spin\(^h\) manifolds are the quaternionic analogue to Spin\(^c\) manifolds. We compute the spin\(^h\) bordism groups at the prime 2 by proving a structure theorem for the cohomology of the spin\(^h\) bordism spectrum \(\mathrm{MSpin}^h\) as a module over the mod 2 Steenrod algebra. This provides a 2...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spin\(^h\) manifolds are the quaternionic analogue to Spin\(^c\) manifolds. We compute the spin\(^h\) bordism groups at the prime 2 by proving a structure theorem for the cohomology of the spin\(^h\) bordism spectrum \(\mathrm{MSpin}^h\) as a module over the mod 2 Steenrod algebra. This provides a 2-local splitting of \(\mathrm{MSpin}^h\) as a wedge sum of familiar spectra. We also compute the decomposition of \(H^*(\mathrm{MSpin}^h;\mathbb{Z}/2\mathbb{Z})\) explicitly in degrees up through 30 via a counting process. |
---|---|
ISSN: | 2331-8422 |