Air entrapment at impact of a conus onto a liquid
In this experimental work, a conus impacts a deep liquid pool at a speed varying from 1.3 to $19.0\ {\rm cm}\ {\rm s}^{-1}$. Two liquids (2.5 % butanol–water solution or distilled water) and four coni made from duralumin with a diameter of 180 mm and different deadrise angles $\beta$ ($2^{\circ }$,...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-07, Vol.966, Article R1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this experimental work, a conus impacts a deep liquid pool at a speed varying from 1.3 to $19.0\ {\rm cm}\ {\rm s}^{-1}$. Two liquids (2.5 % butanol–water solution or distilled water) and four coni made from duralumin with a diameter of 180 mm and different deadrise angles $\beta$ ($2^{\circ }$, $3^{\circ }$, $4^{\circ }$ and 5$^{\circ }$) are tested. An air cushion is trapped between the conus solid surface and the liquid. Several types of bubble patterns after the collapse of the air cushion are observed: one or multiple bubbles near the conus centre (vertex), irregular trails of bubbles on the conus surface and a ring of bubbles in a ‘necklace’-shaped arrangement. With a total internal reflection set-up and appropriate image post-processing, the external and internal radii of the ring-shaped wetted area are estimated for each frame. The external (internal) radius increases (decreases) in time following a linear (exponential) law. The speed of the outer border of the wetted area is in agreement with the Wagner theory for a body impacting onto a liquid. The initial radius of the annular touchdown region is estimated as the intersection of the relevant fitting curves. In the studied range of parameters, the initial radius obeys a universal scaling law, which follows from the air–water lubrication–inertia balance. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2023.394 |