In-silico Studies of Active Phytochemicals from Siddha Medicinal Herbs of Karisalai Chooranam against SARS-CoV-2 main Protease (3CLpro), RNA Dependent RNA Polymerase and Angiotensin-Converting Enzyme II Receptor

Aim: The contagious disease COVID 19 is a recently out-broken pandemic situation which threatens humankind all over the world. Siddha system of medicine is one of the traditional medical systems of India, which has provided a novel remedy for many epidemics like Dengue, Chicken guinea earlier. On ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research journal of pharmacy and technology 2023-03, Vol.16 (3), p.1033-1040
Hauptverfasser: A, Mariappan, J, Thanalakshmi, Sundar, S., S, Radha, R, Meenakumari, G, Kaaruniya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim: The contagious disease COVID 19 is a recently out-broken pandemic situation which threatens humankind all over the world. Siddha system of medicine is one of the traditional medical systems of India, which has provided a novel remedy for many epidemics like Dengue, Chicken guinea earlier. On evaluating the literature evidence and considering the mortality and severity of the disease, we have attempted to identify the possible inhibition of viral replication by "Karisalai Chooranam" - a polyherbal Siddha formulation which contains herbs like Karisalai (Wedelia chinensis), Thoodhuvelai (Solanum trilobatum), Musumusukai (Melothria maderaspatana) and Seeragam (Cuminum cyminum). The aim of this study was to identify the bioactive components present in Karisalai chooranam and pin down the components that inhibit COVID 19 protease by In Silico molecular docking analysis. Material and methods: The study was performed for the active compounds present in the herbs (Wedelia chinensis - Benzoic acid, Solanum trilobatum- Disogenin, Melothria maderaspatana- β–sitosterol, Cuminum cyminum L- Coumaric acid and Limonene) with three potential targets, PDB id: 6LU7 3-chymotrypsin-like protease (3CLpro), PDB id: 6-NUR RNA dependent RNA polymerase and PDB id: 2AJF Angiotensin-converting enzyme II (ACE2) receptor using Autodock Vina. Key findings: The active phytocomponents present in “Karisalai chooranam” was found to inhibit the target 3CL proenzyme and hereby halt the formation of 16 non-structural proteins (nsp1-nsp16) that are highly essential for viral replication and there by prevents viral survival in the host environment. The phytocomponents also inhibited the target RNA dependent RNA polymerase (PDB)-6NUR RdRp which possess versatile action in mediating nonstructural protein (nsp 12) essential for viral replication. A significant binding against the target Angiotensin-converting enzyme II (ACE2) receptors - PDB- 2AJF was found which was recognized as a binding site for novel coronavirus to cause its pathogenesis. Among the five active components present in the herb, the binding ability of Disogenin and β–sitosterol with COVID19 protease suggests a possible mechanism of protease inhibition and thus preventing viral replication. Significance: The results strongly suggest that phytocomponents of “Karisalai chooranam” may act as a potential therapeutic agent for the management of COVID-19 and related symptoms. Further, the efficacy of the active compounds should be te
ISSN:0974-3618
0974-360X
0974-306X
DOI:10.52711/0974-360X.2023.00173