A Proof of the Fusion Rules Theorem

We prove that the space of intertwining operators associated with certain admissible modules over vertex operator algebras is isomorphic to a quotient of the vector space of conformal blocks on a three-pointed rational curve defined by the same data. This provides a new proof and alternative version...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-07, Vol.401 (2), p.1237-1290
1. Verfasser: Liu, Jianqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the space of intertwining operators associated with certain admissible modules over vertex operator algebras is isomorphic to a quotient of the vector space of conformal blocks on a three-pointed rational curve defined by the same data. This provides a new proof and alternative version of Frenkel and Zhu’s fusion rules theorem, in terms of the dimension of certain bimodules over Zhu’s algebra, without the assumption of rationality.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-023-04664-2