A Proof of the Fusion Rules Theorem
We prove that the space of intertwining operators associated with certain admissible modules over vertex operator algebras is isomorphic to a quotient of the vector space of conformal blocks on a three-pointed rational curve defined by the same data. This provides a new proof and alternative version...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2023-07, Vol.401 (2), p.1237-1290 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the space of intertwining operators associated with certain admissible modules over vertex operator algebras is isomorphic to a quotient of the vector space of conformal blocks on a three-pointed rational curve defined by the same data. This provides a new proof and alternative version of Frenkel and Zhu’s fusion rules theorem, in terms of the dimension of certain bimodules over Zhu’s algebra, without the assumption of rationality. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-023-04664-2 |