On Lengths of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\)
In this paper, we provide a formula for the vector space dimension of the ring \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) over \(\mathbb{F}_2\) when \(d_1,d_2,d_3\) all lie between successive powers of \(2\). For general \(d_1,d_2,d_3\), we provide a simple algorithm to calculate the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Han, Fiona Kenkel, Jennifer Li, Daniel Venkatesh, Sridhar Wiles, Ashley |
description | In this paper, we provide a formula for the vector space dimension of the ring \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) over \(\mathbb{F}_2\) when \(d_1,d_2,d_3\) all lie between successive powers of \(2\). For general \(d_1,d_2,d_3\), we provide a simple algorithm to calculate the vector space dimension of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) by combining our formula with certain results of Chungsim Han (1992). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2831656380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831656380</sourcerecordid><originalsourceid>FETCH-proquest_journals_28316563803</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw989T8EnNSy_JKFbIT1OI0YjJTSzJSEqqdquNN4qu0KnUqYrV16iIq06JN6zVUagEMYxqdapAtDFQoEK7UrtKM0aTh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijSyMDc1MzYwtDIyJUwUA6-k5VQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831656380</pqid></control><display><type>article</type><title>On Lengths of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\)</title><source>Free E- Journals</source><creator>Han, Fiona ; Kenkel, Jennifer ; Li, Daniel ; Venkatesh, Sridhar ; Wiles, Ashley</creator><creatorcontrib>Han, Fiona ; Kenkel, Jennifer ; Li, Daniel ; Venkatesh, Sridhar ; Wiles, Ashley</creatorcontrib><description>In this paper, we provide a formula for the vector space dimension of the ring \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) over \(\mathbb{F}_2\) when \(d_1,d_2,d_3\) all lie between successive powers of \(2\). For general \(d_1,d_2,d_3\), we provide a simple algorithm to calculate the vector space dimension of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) by combining our formula with certain results of Chungsim Han (1992).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Cryptography ; Field theory ; Mathematical analysis ; Polynomials ; Questions ; Quotients ; Rings (mathematics) ; Vector spaces</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Han, Fiona</creatorcontrib><creatorcontrib>Kenkel, Jennifer</creatorcontrib><creatorcontrib>Li, Daniel</creatorcontrib><creatorcontrib>Venkatesh, Sridhar</creatorcontrib><creatorcontrib>Wiles, Ashley</creatorcontrib><title>On Lengths of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\)</title><title>arXiv.org</title><description>In this paper, we provide a formula for the vector space dimension of the ring \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) over \(\mathbb{F}_2\) when \(d_1,d_2,d_3\) all lie between successive powers of \(2\). For general \(d_1,d_2,d_3\), we provide a simple algorithm to calculate the vector space dimension of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) by combining our formula with certain results of Chungsim Han (1992).</description><subject>Algebra</subject><subject>Cryptography</subject><subject>Field theory</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Questions</subject><subject>Quotients</subject><subject>Rings (mathematics)</subject><subject>Vector spaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw989T8EnNSy_JKFbIT1OI0YjJTSzJSEqqdquNN4qu0KnUqYrV16iIq06JN6zVUagEMYxqdapAtDFQoEK7UrtKM0aTh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijSyMDc1MzYwtDIyJUwUA6-k5VQ</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Han, Fiona</creator><creator>Kenkel, Jennifer</creator><creator>Li, Daniel</creator><creator>Venkatesh, Sridhar</creator><creator>Wiles, Ashley</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240820</creationdate><title>On Lengths of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\)</title><author>Han, Fiona ; Kenkel, Jennifer ; Li, Daniel ; Venkatesh, Sridhar ; Wiles, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28316563803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Cryptography</topic><topic>Field theory</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Questions</topic><topic>Quotients</topic><topic>Rings (mathematics)</topic><topic>Vector spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Fiona</creatorcontrib><creatorcontrib>Kenkel, Jennifer</creatorcontrib><creatorcontrib>Li, Daniel</creatorcontrib><creatorcontrib>Venkatesh, Sridhar</creatorcontrib><creatorcontrib>Wiles, Ashley</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Fiona</au><au>Kenkel, Jennifer</au><au>Li, Daniel</au><au>Venkatesh, Sridhar</au><au>Wiles, Ashley</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Lengths of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\)</atitle><jtitle>arXiv.org</jtitle><date>2024-08-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we provide a formula for the vector space dimension of the ring \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) over \(\mathbb{F}_2\) when \(d_1,d_2,d_3\) all lie between successive powers of \(2\). For general \(d_1,d_2,d_3\), we provide a simple algorithm to calculate the vector space dimension of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) by combining our formula with certain results of Chungsim Han (1992).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2831656380 |
source | Free E- Journals |
subjects | Algebra Cryptography Field theory Mathematical analysis Polynomials Questions Quotients Rings (mathematics) Vector spaces |
title | On Lengths of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Lengths%20of%20%5C(%5Cmathbb%7BF%7D_2%5Bx,y,z%5D/(x%5E%7Bd_1%7D,%20y%5E%7Bd_2%7D,z%5E%7Bd_3%7D,%20x+y+z)%5C)&rft.jtitle=arXiv.org&rft.au=Han,%20Fiona&rft.date=2024-08-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2831656380%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831656380&rft_id=info:pmid/&rfr_iscdi=true |