On Lengths of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\)
In this paper, we provide a formula for the vector space dimension of the ring \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) over \(\mathbb{F}_2\) when \(d_1,d_2,d_3\) all lie between successive powers of \(2\). For general \(d_1,d_2,d_3\), we provide a simple algorithm to calculate the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we provide a formula for the vector space dimension of the ring \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) over \(\mathbb{F}_2\) when \(d_1,d_2,d_3\) all lie between successive powers of \(2\). For general \(d_1,d_2,d_3\), we provide a simple algorithm to calculate the vector space dimension of \(\mathbb{F}_2[x,y,z]/(x^{d_1}, y^{d_2},z^{d_3}, x+y+z)\) by combining our formula with certain results of Chungsim Han (1992). |
---|---|
ISSN: | 2331-8422 |