Finite groups with submodular primary subgroups

We investigate groups with submodular primary subgroups. We establish that a primary subgroup H of a soluble group G is submodular if and only if H is U 1 -subnormal in G . Here U 1 is the formation of all supersoluble groups of square-free exponents. We describe the structure of a group with submod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2023-07, Vol.121 (1), p.1-10
Hauptverfasser: Monakhov, Victor S., Sokhor, Irina L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate groups with submodular primary subgroups. We establish that a primary subgroup H of a soluble group G is submodular if and only if H is U 1 -subnormal in G . Here U 1 is the formation of all supersoluble groups of square-free exponents. We describe the structure of a group with submodular cyclic primary subgroups. It is proved that in a group with nilpotent derived subgroup, submodularity of cyclic primary subgroups is equivalent to submodularity of Sylow subgroups.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-023-01872-z