Finite groups with submodular primary subgroups
We investigate groups with submodular primary subgroups. We establish that a primary subgroup H of a soluble group G is submodular if and only if H is U 1 -subnormal in G . Here U 1 is the formation of all supersoluble groups of square-free exponents. We describe the structure of a group with submod...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2023-07, Vol.121 (1), p.1-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate groups with submodular primary subgroups. We establish that a primary subgroup
H
of a soluble group
G
is submodular if and only if
H
is
U
1
-subnormal in
G
. Here
U
1
is the formation of all supersoluble groups of square-free exponents. We describe the structure of a group with submodular cyclic primary subgroups. It is proved that in a group with nilpotent derived subgroup, submodularity of cyclic primary subgroups is equivalent to submodularity of Sylow subgroups. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-023-01872-z |