PID-Based Enhanced Flower Pollination Algorithm Controller for Drilling Process in a Composite Material
Due to the variability in the physical and chemical properties of the composite material, understanding the dynamics of the drilling process in this material can be challenging. One of the most significant issues that can result from size and shape abnormalities in the hole during the drilling proce...
Gespeichert in:
Veröffentlicht in: | Annales de chimie (Paris. 1914) 2023-04, Vol.47 (2), p.91-96 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the variability in the physical and chemical properties of the composite material, understanding the dynamics of the drilling process in this material can be challenging. One of the most significant issues that can result from size and shape abnormalities in the hole during the drilling process is delamination. These errors could be unacceptable and lower the product's quality. In order to regulate the drilling process of Glass Fiber Reinforced Plastic (GFRP) composite, this work proposes an optimal Proportional-Integral-Derivative (PID) controller based on Enhanced Flower Pollination Algorithm (EFPA). Based on the Integral Time of Absolute Error (ITAE) index, the proposed tuning approach is compared with the traditional Flower Pollination Algorithm (FPA) and Particle Swarm Optimization (PSO). In terms of time response specifications and error performance index. Simulation results using MATLAB demonstrate the superiority of the proposed EFPA over conventional FPA and PSO for improving the tuning of the PID for controlling the drilling process. |
---|---|
ISSN: | 0151-9107 1958-5934 |
DOI: | 10.18280/acsm.470205 |