Learning-on-the-Drive: Self-supervised Adaptation of Visual Offroad Traversability Models
Autonomous offroad driving is essential for applications like emergency rescue, military operations, and agriculture. Despite progress, systems struggle with high-speed vehicles exceeding 10m/s due to the need for accurate long-range (> 50m) perception for safe navigation. Current approaches are...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autonomous offroad driving is essential for applications like emergency rescue, military operations, and agriculture. Despite progress, systems struggle with high-speed vehicles exceeding 10m/s due to the need for accurate long-range (> 50m) perception for safe navigation. Current approaches are limited by sensor constraints; LiDAR-based methods offer precise short-range data but are noisy beyond 30m, while visual models provide dense long-range measurements but falter with unseen scenarios. To overcome these issues, we introduce ALTER, a learning-on-the-drive perception framework that leverages both sensor types. ALTER uses a self-supervised visual model to learn and adapt from near-range LiDAR measurements, improving long-range prediction in new environments without manual labeling. It also includes a model selection module for better sensor failure response and adaptability to known environments. Testing in two real-world settings showed on average 43.4% better traversability prediction than LiDAR-only and 164% over non-adaptive state-of-the-art (SOTA) visual semantic methods after 45 seconds of online learning. |
---|---|
ISSN: | 2331-8422 |