Hyperspectral Anomaly Detection via Structured Sparsity Plus Enhanced Low-Rankness

Hyperspectral anomaly detection (HAD), distinguishing anomalous pixels or subpixels from the background, has received increasing attention in recent years. Low-Rank Representation (LRR)-based methods have also been promoted rapidly for HAD, but they may encounter three challenges: (1) they adopted t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Zhao, Yin-Ping, Li, Hongyan, Chen, Yongyong, Wang, Zhen, Li, Xuelong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Zhao, Yin-Ping
Li, Hongyan
Chen, Yongyong
Wang, Zhen
Li, Xuelong
description Hyperspectral anomaly detection (HAD), distinguishing anomalous pixels or subpixels from the background, has received increasing attention in recent years. Low-Rank Representation (LRR)-based methods have also been promoted rapidly for HAD, but they may encounter three challenges: (1) they adopted the nuclear norm as the convex approximation, yet a sub-optimal solution of the rank function; (2) they overlook the structured spatial correlation of anomalous pixels; (3) they fail to comprehensively explore the local structure details of the original background. To address these challenges, in this paper, we proposed the Structured Sparsity Plus Enhanced Low-Rank (S 2 ELR) method for HAD. Specifically, our S 2 ELR method adopts the weighted tensor Schatten- p norm, acting as an enhanced approximation of the rank function than the tensor nuclear norm, and the structured sparse norm to characterize the low-rank properties of the background and the sparsity of the abnormal pixels, respectively. To preserve the local structural details, the position-based Laplace regularizer is accompanied. An iterative algorithm is derived from the popular alternating direction methods of multipliers. Compared to the existing state-of-the-art HAD methods, the experimental results have demonstrated the superiority of our proposed S 2 ELR method.
doi_str_mv 10.1109/TGRS.2023.3285269
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2830408721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10148989</ieee_id><sourcerecordid>2830408721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-715587e39dd12b2e11346c35ef8e5a612aaacf4887c1be2ef875015c75d5cc953</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl1Zz-S3WOptRUKSlvPy3YzwdQ0ibuJkn9vSnvwNPDyvDPDQ8g90AkA1U_bxXozYZTxCWdKskRfkBFIqWKaCHFJRhR0EjOl2TW5CWFPKQgJ6Yisl32DPjToWm_LaFrVB1v20TO2Q1LUVfRT2GjT-s61nccs2jTWh6Lto_eyC9G8-rSVG-JV_RuvbfVVYQi35Cq3ZcC78xyTj5f5draMV2-L19l0FTumRRunx_dS5DrLgO0YAnCROC4xVyhtAsxa63KhVOpgh2yIU0lBulRm0jkt-Zg8nvY2vv7uMLRmX3e-Gk4apjgVVKUMBgpOlPN1CB5z0_jiYH1vgJqjOnNUZ47qzFnd0Hk4dQpE_MeDUFpp_gcmb2sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830408721</pqid></control><display><type>article</type><title>Hyperspectral Anomaly Detection via Structured Sparsity Plus Enhanced Low-Rankness</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yin-Ping ; Li, Hongyan ; Chen, Yongyong ; Wang, Zhen ; Li, Xuelong</creator><creatorcontrib>Zhao, Yin-Ping ; Li, Hongyan ; Chen, Yongyong ; Wang, Zhen ; Li, Xuelong</creatorcontrib><description>Hyperspectral anomaly detection (HAD), distinguishing anomalous pixels or subpixels from the background, has received increasing attention in recent years. Low-Rank Representation (LRR)-based methods have also been promoted rapidly for HAD, but they may encounter three challenges: (1) they adopted the nuclear norm as the convex approximation, yet a sub-optimal solution of the rank function; (2) they overlook the structured spatial correlation of anomalous pixels; (3) they fail to comprehensively explore the local structure details of the original background. To address these challenges, in this paper, we proposed the Structured Sparsity Plus Enhanced Low-Rank (S 2 ELR) method for HAD. Specifically, our S 2 ELR method adopts the weighted tensor Schatten- p norm, acting as an enhanced approximation of the rank function than the tensor nuclear norm, and the structured sparse norm to characterize the low-rank properties of the background and the sparsity of the abnormal pixels, respectively. To preserve the local structural details, the position-based Laplace regularizer is accompanied. An iterative algorithm is derived from the popular alternating direction methods of multipliers. Compared to the existing state-of-the-art HAD methods, the experimental results have demonstrated the superiority of our proposed S 2 ELR method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3285269</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Approximation ; Correlation ; Detection ; Detectors ; Estimation ; Hyperspectral imaging ; Iterative algorithms ; Iterative methods ; Laplace equations ; Laplacian Graph ; Low-Rank ; Mathematical analysis ; Methods ; Pixels ; Sparsity ; Structure Tensor ; Tensor Decomposition ; Tensors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-715587e39dd12b2e11346c35ef8e5a612aaacf4887c1be2ef875015c75d5cc953</citedby><cites>FETCH-LOGICAL-c294t-715587e39dd12b2e11346c35ef8e5a612aaacf4887c1be2ef875015c75d5cc953</cites><orcidid>0000-0002-8182-2852 ; 0000-0003-2766-5689 ; 0000-0003-2924-946X ; 0000-0003-1970-1993 ; 0000-0002-6845-4231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10148989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10148989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yin-Ping</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><title>Hyperspectral Anomaly Detection via Structured Sparsity Plus Enhanced Low-Rankness</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Hyperspectral anomaly detection (HAD), distinguishing anomalous pixels or subpixels from the background, has received increasing attention in recent years. Low-Rank Representation (LRR)-based methods have also been promoted rapidly for HAD, but they may encounter three challenges: (1) they adopted the nuclear norm as the convex approximation, yet a sub-optimal solution of the rank function; (2) they overlook the structured spatial correlation of anomalous pixels; (3) they fail to comprehensively explore the local structure details of the original background. To address these challenges, in this paper, we proposed the Structured Sparsity Plus Enhanced Low-Rank (S 2 ELR) method for HAD. Specifically, our S 2 ELR method adopts the weighted tensor Schatten- p norm, acting as an enhanced approximation of the rank function than the tensor nuclear norm, and the structured sparse norm to characterize the low-rank properties of the background and the sparsity of the abnormal pixels, respectively. To preserve the local structural details, the position-based Laplace regularizer is accompanied. An iterative algorithm is derived from the popular alternating direction methods of multipliers. Compared to the existing state-of-the-art HAD methods, the experimental results have demonstrated the superiority of our proposed S 2 ELR method.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Approximation</subject><subject>Correlation</subject><subject>Detection</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Hyperspectral imaging</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Laplace equations</subject><subject>Laplacian Graph</subject><subject>Low-Rank</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Pixels</subject><subject>Sparsity</subject><subject>Structure Tensor</subject><subject>Tensor Decomposition</subject><subject>Tensors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl1Zz-S3WOptRUKSlvPy3YzwdQ0ibuJkn9vSnvwNPDyvDPDQ8g90AkA1U_bxXozYZTxCWdKskRfkBFIqWKaCHFJRhR0EjOl2TW5CWFPKQgJ6Yisl32DPjToWm_LaFrVB1v20TO2Q1LUVfRT2GjT-s61nccs2jTWh6Lto_eyC9G8-rSVG-JV_RuvbfVVYQi35Cq3ZcC78xyTj5f5draMV2-L19l0FTumRRunx_dS5DrLgO0YAnCROC4xVyhtAsxa63KhVOpgh2yIU0lBulRm0jkt-Zg8nvY2vv7uMLRmX3e-Gk4apjgVVKUMBgpOlPN1CB5z0_jiYH1vgJqjOnNUZ47qzFnd0Hk4dQpE_MeDUFpp_gcmb2sA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhao, Yin-Ping</creator><creator>Li, Hongyan</creator><creator>Chen, Yongyong</creator><creator>Wang, Zhen</creator><creator>Li, Xuelong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8182-2852</orcidid><orcidid>https://orcid.org/0000-0003-2766-5689</orcidid><orcidid>https://orcid.org/0000-0003-2924-946X</orcidid><orcidid>https://orcid.org/0000-0003-1970-1993</orcidid><orcidid>https://orcid.org/0000-0002-6845-4231</orcidid></search><sort><creationdate>20230101</creationdate><title>Hyperspectral Anomaly Detection via Structured Sparsity Plus Enhanced Low-Rankness</title><author>Zhao, Yin-Ping ; Li, Hongyan ; Chen, Yongyong ; Wang, Zhen ; Li, Xuelong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-715587e39dd12b2e11346c35ef8e5a612aaacf4887c1be2ef875015c75d5cc953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Approximation</topic><topic>Correlation</topic><topic>Detection</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Hyperspectral imaging</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Laplace equations</topic><topic>Laplacian Graph</topic><topic>Low-Rank</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Pixels</topic><topic>Sparsity</topic><topic>Structure Tensor</topic><topic>Tensor Decomposition</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yin-Ping</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yin-Ping</au><au>Li, Hongyan</au><au>Chen, Yongyong</au><au>Wang, Zhen</au><au>Li, Xuelong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Anomaly Detection via Structured Sparsity Plus Enhanced Low-Rankness</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Hyperspectral anomaly detection (HAD), distinguishing anomalous pixels or subpixels from the background, has received increasing attention in recent years. Low-Rank Representation (LRR)-based methods have also been promoted rapidly for HAD, but they may encounter three challenges: (1) they adopted the nuclear norm as the convex approximation, yet a sub-optimal solution of the rank function; (2) they overlook the structured spatial correlation of anomalous pixels; (3) they fail to comprehensively explore the local structure details of the original background. To address these challenges, in this paper, we proposed the Structured Sparsity Plus Enhanced Low-Rank (S 2 ELR) method for HAD. Specifically, our S 2 ELR method adopts the weighted tensor Schatten- p norm, acting as an enhanced approximation of the rank function than the tensor nuclear norm, and the structured sparse norm to characterize the low-rank properties of the background and the sparsity of the abnormal pixels, respectively. To preserve the local structural details, the position-based Laplace regularizer is accompanied. An iterative algorithm is derived from the popular alternating direction methods of multipliers. Compared to the existing state-of-the-art HAD methods, the experimental results have demonstrated the superiority of our proposed S 2 ELR method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3285269</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8182-2852</orcidid><orcidid>https://orcid.org/0000-0003-2766-5689</orcidid><orcidid>https://orcid.org/0000-0003-2924-946X</orcidid><orcidid>https://orcid.org/0000-0003-1970-1993</orcidid><orcidid>https://orcid.org/0000-0002-6845-4231</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2830408721
source IEEE Electronic Library (IEL)
subjects Anomalies
Anomaly detection
Approximation
Correlation
Detection
Detectors
Estimation
Hyperspectral imaging
Iterative algorithms
Iterative methods
Laplace equations
Laplacian Graph
Low-Rank
Mathematical analysis
Methods
Pixels
Sparsity
Structure Tensor
Tensor Decomposition
Tensors
title Hyperspectral Anomaly Detection via Structured Sparsity Plus Enhanced Low-Rankness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Anomaly%20Detection%20via%20Structured%20Sparsity%20Plus%20Enhanced%20Low-Rankness&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhao,%20Yin-Ping&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3285269&rft_dat=%3Cproquest_RIE%3E2830408721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830408721&rft_id=info:pmid/&rft_ieee_id=10148989&rfr_iscdi=true