Hyperspectral Anomaly Detection via Structured Sparsity Plus Enhanced Low-Rankness
Hyperspectral anomaly detection (HAD), distinguishing anomalous pixels or subpixels from the background, has received increasing attention in recent years. Low-Rank Representation (LRR)-based methods have also been promoted rapidly for HAD, but they may encounter three challenges: (1) they adopted t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyperspectral anomaly detection (HAD), distinguishing anomalous pixels or subpixels from the background, has received increasing attention in recent years. Low-Rank Representation (LRR)-based methods have also been promoted rapidly for HAD, but they may encounter three challenges: (1) they adopted the nuclear norm as the convex approximation, yet a sub-optimal solution of the rank function; (2) they overlook the structured spatial correlation of anomalous pixels; (3) they fail to comprehensively explore the local structure details of the original background. To address these challenges, in this paper, we proposed the Structured Sparsity Plus Enhanced Low-Rank (S 2 ELR) method for HAD. Specifically, our S 2 ELR method adopts the weighted tensor Schatten- p norm, acting as an enhanced approximation of the rank function than the tensor nuclear norm, and the structured sparse norm to characterize the low-rank properties of the background and the sparsity of the abnormal pixels, respectively. To preserve the local structural details, the position-based Laplace regularizer is accompanied. An iterative algorithm is derived from the popular alternating direction methods of multipliers. Compared to the existing state-of-the-art HAD methods, the experimental results have demonstrated the superiority of our proposed S 2 ELR method. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2023.3285269 |