Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values

In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2023-06, Vol.128 (6), p.n/a
Hauptverfasser: Reddy, S. A., Forsyth, C., Aruliah, A., Smith, A., Bortnik, J., Aa, E., Kataria, D. O., Lewis, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 128
creator Reddy, S. A.
Forsyth, C.
Aruliah, A.
Smith, A.
Bortnik, J.
Aa, E.
Kataria, D. O.
Lewis, G.
description In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day‐to‐day variability has made predicting them a considerable challenge. We build an ensemble machine learning model to predict IBI. We use data from 2014 to 2022 at a resolution of 1s, and transform it from a time‐series into a 6‐dimensional space with a corresponding EPB R2 (0–1) acting as the label. APE performs well across all metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. The model performs best post‐sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The analysis also examines the relationship between the features, which reveals new insights into EPB climatology. Finally, the selection of the features means that APE could be expanded to forecasting EPBs following additional investigations into their onset. Key Points AI Prediction of EPBs (APE) can accurately predict the Swarm Ionospheric Bubble Index APE is an XGBoost regressor that outperforms similarly trained linear and random forest models Game theory techniques reveals the influence of solar and geomagnetic activity as well as geo‐location, time, and season
doi_str_mv 10.1029/2022JA031183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2830355344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830355344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3458-3b812356b17df948fa30ae294294d8392658ece13e076e204bdcb6ae4d48c9403</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOObe_AABX60muaRLH-eY0zFxbOpruLap6-jaLVkd-_ZmTMEnj4M7jt_dn_8Rcs3ZHWciuRdMiMmAAecazkhH8DiJEsnE-W8Pml2SnvcrFkKHEVcdMp85m5fZrqw_6WKPbk1H2xZ3jSuxorMK_RrpQ5umlfX0q0T6gtmyrC2dWnT1cQnrnC6WuKnsgX5g1Vp_RS4KrLzt_dQueX8cvQ2founr-Hk4mEYZSKUjSDUXoOKU9_MikbpAYGhFIkPmGhIRK20zy8GyfmwFk2mepTFamUudBWPQJTenuxvXbIPuzqya1tVB0ggNDJQCKQN1e6Iy13jvbGE2rlyjOxjOzPFx5u_jAg4nfF8GR_-yZjKeD1Rfaw3fPqttDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830355344</pqid></control><display><type>article</type><title>Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reddy, S. A. ; Forsyth, C. ; Aruliah, A. ; Smith, A. ; Bortnik, J. ; Aa, E. ; Kataria, D. O. ; Lewis, G.</creator><creatorcontrib>Reddy, S. A. ; Forsyth, C. ; Aruliah, A. ; Smith, A. ; Bortnik, J. ; Aa, E. ; Kataria, D. O. ; Lewis, G.</creatorcontrib><description>In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day‐to‐day variability has made predicting them a considerable challenge. We build an ensemble machine learning model to predict IBI. We use data from 2014 to 2022 at a resolution of 1s, and transform it from a time‐series into a 6‐dimensional space with a corresponding EPB R2 (0–1) acting as the label. APE performs well across all metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. The model performs best post‐sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The analysis also examines the relationship between the features, which reveals new insights into EPB climatology. Finally, the selection of the features means that APE could be expanded to forecasting EPBs following additional investigations into their onset. Key Points AI Prediction of EPBs (APE) can accurately predict the Swarm Ionospheric Bubble Index APE is an XGBoost regressor that outperforms similarly trained linear and random forest models Game theory techniques reveals the influence of solar and geomagnetic activity as well as geo‐location, time, and season</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2022JA031183</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Bubbles ; Climatology ; equatorial plasma bubbles ; Machine learning ; Magnetic fields ; Perturbation ; Plasma ; Plasma bubbles ; Plasma density ; predictions ; Shapley values ; Solar activity ; Spacecraft</subject><ispartof>Journal of geophysical research. Space physics, 2023-06, Vol.128 (6), p.n/a</ispartof><rights>2023. The Authors.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3458-3b812356b17df948fa30ae294294d8392658ece13e076e204bdcb6ae4d48c9403</citedby><cites>FETCH-LOGICAL-c3458-3b812356b17df948fa30ae294294d8392658ece13e076e204bdcb6ae4d48c9403</cites><orcidid>0000-0002-5228-4119 ; 0000-0002-2849-8475 ; 0000-0002-0026-8395 ; 0000-0001-7321-4331 ; 0000-0003-1237-6518 ; 0000-0001-8811-8836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022JA031183$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022JA031183$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Reddy, S. A.</creatorcontrib><creatorcontrib>Forsyth, C.</creatorcontrib><creatorcontrib>Aruliah, A.</creatorcontrib><creatorcontrib>Smith, A.</creatorcontrib><creatorcontrib>Bortnik, J.</creatorcontrib><creatorcontrib>Aa, E.</creatorcontrib><creatorcontrib>Kataria, D. O.</creatorcontrib><creatorcontrib>Lewis, G.</creatorcontrib><title>Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values</title><title>Journal of geophysical research. Space physics</title><description>In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day‐to‐day variability has made predicting them a considerable challenge. We build an ensemble machine learning model to predict IBI. We use data from 2014 to 2022 at a resolution of 1s, and transform it from a time‐series into a 6‐dimensional space with a corresponding EPB R2 (0–1) acting as the label. APE performs well across all metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. The model performs best post‐sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The analysis also examines the relationship between the features, which reveals new insights into EPB climatology. Finally, the selection of the features means that APE could be expanded to forecasting EPBs following additional investigations into their onset. Key Points AI Prediction of EPBs (APE) can accurately predict the Swarm Ionospheric Bubble Index APE is an XGBoost regressor that outperforms similarly trained linear and random forest models Game theory techniques reveals the influence of solar and geomagnetic activity as well as geo‐location, time, and season</description><subject>Bubbles</subject><subject>Climatology</subject><subject>equatorial plasma bubbles</subject><subject>Machine learning</subject><subject>Magnetic fields</subject><subject>Perturbation</subject><subject>Plasma</subject><subject>Plasma bubbles</subject><subject>Plasma density</subject><subject>predictions</subject><subject>Shapley values</subject><subject>Solar activity</subject><subject>Spacecraft</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kFFLwzAQx4MoOObe_AABX60muaRLH-eY0zFxbOpruLap6-jaLVkd-_ZmTMEnj4M7jt_dn_8Rcs3ZHWciuRdMiMmAAecazkhH8DiJEsnE-W8Pml2SnvcrFkKHEVcdMp85m5fZrqw_6WKPbk1H2xZ3jSuxorMK_RrpQ5umlfX0q0T6gtmyrC2dWnT1cQnrnC6WuKnsgX5g1Vp_RS4KrLzt_dQueX8cvQ2founr-Hk4mEYZSKUjSDUXoOKU9_MikbpAYGhFIkPmGhIRK20zy8GyfmwFk2mepTFamUudBWPQJTenuxvXbIPuzqya1tVB0ggNDJQCKQN1e6Iy13jvbGE2rlyjOxjOzPFx5u_jAg4nfF8GR_-yZjKeD1Rfaw3fPqttDw</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Reddy, S. A.</creator><creator>Forsyth, C.</creator><creator>Aruliah, A.</creator><creator>Smith, A.</creator><creator>Bortnik, J.</creator><creator>Aa, E.</creator><creator>Kataria, D. O.</creator><creator>Lewis, G.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5228-4119</orcidid><orcidid>https://orcid.org/0000-0002-2849-8475</orcidid><orcidid>https://orcid.org/0000-0002-0026-8395</orcidid><orcidid>https://orcid.org/0000-0001-7321-4331</orcidid><orcidid>https://orcid.org/0000-0003-1237-6518</orcidid><orcidid>https://orcid.org/0000-0001-8811-8836</orcidid></search><sort><creationdate>202306</creationdate><title>Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values</title><author>Reddy, S. A. ; Forsyth, C. ; Aruliah, A. ; Smith, A. ; Bortnik, J. ; Aa, E. ; Kataria, D. O. ; Lewis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3458-3b812356b17df948fa30ae294294d8392658ece13e076e204bdcb6ae4d48c9403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bubbles</topic><topic>Climatology</topic><topic>equatorial plasma bubbles</topic><topic>Machine learning</topic><topic>Magnetic fields</topic><topic>Perturbation</topic><topic>Plasma</topic><topic>Plasma bubbles</topic><topic>Plasma density</topic><topic>predictions</topic><topic>Shapley values</topic><topic>Solar activity</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, S. A.</creatorcontrib><creatorcontrib>Forsyth, C.</creatorcontrib><creatorcontrib>Aruliah, A.</creatorcontrib><creatorcontrib>Smith, A.</creatorcontrib><creatorcontrib>Bortnik, J.</creatorcontrib><creatorcontrib>Aa, E.</creatorcontrib><creatorcontrib>Kataria, D. O.</creatorcontrib><creatorcontrib>Lewis, G.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, S. A.</au><au>Forsyth, C.</au><au>Aruliah, A.</au><au>Smith, A.</au><au>Bortnik, J.</au><au>Aa, E.</au><au>Kataria, D. O.</au><au>Lewis, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2023-06</date><risdate>2023</risdate><volume>128</volume><issue>6</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day‐to‐day variability has made predicting them a considerable challenge. We build an ensemble machine learning model to predict IBI. We use data from 2014 to 2022 at a resolution of 1s, and transform it from a time‐series into a 6‐dimensional space with a corresponding EPB R2 (0–1) acting as the label. APE performs well across all metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. The model performs best post‐sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The analysis also examines the relationship between the features, which reveals new insights into EPB climatology. Finally, the selection of the features means that APE could be expanded to forecasting EPBs following additional investigations into their onset. Key Points AI Prediction of EPBs (APE) can accurately predict the Swarm Ionospheric Bubble Index APE is an XGBoost regressor that outperforms similarly trained linear and random forest models Game theory techniques reveals the influence of solar and geomagnetic activity as well as geo‐location, time, and season</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2022JA031183</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5228-4119</orcidid><orcidid>https://orcid.org/0000-0002-2849-8475</orcidid><orcidid>https://orcid.org/0000-0002-0026-8395</orcidid><orcidid>https://orcid.org/0000-0001-7321-4331</orcidid><orcidid>https://orcid.org/0000-0003-1237-6518</orcidid><orcidid>https://orcid.org/0000-0001-8811-8836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2023-06, Vol.128 (6), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2830355344
source Wiley Online Library Journals Frontfile Complete
subjects Bubbles
Climatology
equatorial plasma bubbles
Machine learning
Magnetic fields
Perturbation
Plasma
Plasma bubbles
Plasma density
predictions
Shapley values
Solar activity
Spacecraft
title Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Swarm%20Equatorial%20Plasma%20Bubbles%20via%20Machine%20Learning%20and%20Shapley%20Values&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Reddy,%20S.%20A.&rft.date=2023-06&rft.volume=128&rft.issue=6&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2022JA031183&rft_dat=%3Cproquest_cross%3E2830355344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830355344&rft_id=info:pmid/&rfr_iscdi=true