Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values
In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Eq...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2023-06, Vol.128 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day‐to‐day variability has made predicting them a considerable challenge. We build an ensemble machine learning model to predict IBI. We use data from 2014 to 2022 at a resolution of 1s, and transform it from a time‐series into a 6‐dimensional space with a corresponding EPB R2 (0–1) acting as the label. APE performs well across all metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. The model performs best post‐sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The analysis also examines the relationship between the features, which reveals new insights into EPB climatology. Finally, the selection of the features means that APE could be expanded to forecasting EPBs following additional investigations into their onset.
Key Points
AI Prediction of EPBs (APE) can accurately predict the Swarm Ionospheric Bubble Index
APE is an XGBoost regressor that outperforms similarly trained linear and random forest models
Game theory techniques reveals the influence of solar and geomagnetic activity as well as geo‐location, time, and season |
---|---|
ISSN: | 2169-9380 2169-9402 |
DOI: | 10.1029/2022JA031183 |