Efficient equidistribution of periodic nilsequences and applications
This is a companion paper to arXiv:2312.10772. We deduce an equidistribution theorem for periodic nilsequences and use this theorem to give two applications in arithmetic combinatorics. The first application is quasi-polynomial bounds for a certain complexity one polynomial progression, improving th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This is a companion paper to arXiv:2312.10772. We deduce an equidistribution theorem for periodic nilsequences and use this theorem to give two applications in arithmetic combinatorics. The first application is quasi-polynomial bounds for a certain complexity one polynomial progression, improving the iterated logarithm bound previusly obtained. The second application is a proof of the quasi-polynomial \(U^4[N]\) inverse theorem. In work with Sah and Sawhney, we obtain improved bounds for sets lacking nontrivial \(5\)-term arithmetic progressions. |
---|---|
ISSN: | 2331-8422 |