Simulation of Biophysicochemical Characteristics of the Soils Using Geoelectrical Measurements near the Sewage Station, Assiut City, Egypt

Numerous farmers regularly irrigate their farms with inadequately treated sewage water pumped from the sewage system in the Arab El-Madabegh district of Assiut City, Egypt. According to previous studies, long-term irrigation with partially treated sewage water resulted in significant changes in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2023-06, Vol.15 (12), p.2148
Hauptverfasser: Abdel Aal, Gamal Z., Faragallah, Mohamed E., Abd-Alla, Mohamed H., Abd El-Rhman, Reham S., Abdel Gowad, Ahmed M., Abdelhalim, Ahmed, Ahmed, Mohamed S., Abudeif, Abdelbaset M., Mohammed, Mohammed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous farmers regularly irrigate their farms with inadequately treated sewage water pumped from the sewage system in the Arab El-Madabegh district of Assiut City, Egypt. According to previous studies, long-term irrigation with partially treated sewage water resulted in significant changes in the physicochemical properties of soil. The principal goals of this study are (1) to infer empirical equations between geoelectrical resistivity measurements and certain biophysicochemical parameters of some soil samples, and (2) to use these empirical equations to calculate the biophysicochemical parameters of the unknown samples for the same location. For this purpose, 27 soil samples at different depth levels (0 to 25, 25 to 60, and 60 to 90 cm) were collected from eleven locations at the sewage station. Physical properties including water content and particle size distribution, chemical properties including soil pH, electrical conductivity (EC), and the heavy metals concentrations, biological properties including total coliform counts, and geoelectrical resistivity measurements were estimated and analyzed for these samples. Electrical resistivity measurements and biophysicochemical properties were cross-correlated using the exponential trend line to fit the cross-correlated data, and the empirical relationships were obtained. These empirical relationships in conjunction with the measured electrical resistivity measurements were used to calculate the biophysicochemical values of the other three random soil samples. The biophysicochemical values of the former three samples were measured by the same normal procedures as 27 samples. Then, the calculated values were correlated with the measured ones. Good correlations between the estimated and the measured values for biophysicochemical features were obtained. Therefore, this method can be employed to calculate the biophysicochemical parameters for any unknown samples that have the same geological conditions for estimating and monitoring soil contamination.
ISSN:2073-4441
2073-4441
DOI:10.3390/w15122148