Theoretical Study and Experimental Validation on the Applicable Refrigerant for Space Heating Air Source Heat Pump
The air source heat pump (ASHP) is developing rapidly and is widely used for space heating due to its potential for increasing energy efficiency and reducing greenhouse gas emissions. The choice of appropriate low global warming potential (GWP) alternative refrigerants is one of the challenges that...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-06, Vol.15 (12), p.9420 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The air source heat pump (ASHP) is developing rapidly and is widely used for space heating due to its potential for increasing energy efficiency and reducing greenhouse gas emissions. The choice of appropriate low global warming potential (GWP) alternative refrigerants is one of the challenges that ASHP systems face. Alternative refrigerants also affect the energy performance of these systems. Thus, it is essential to evaluate the performance of ASHP using environmentally friendly refrigerants to facilitate reasonable refrigerant selection. A theoretical model for simulating ASHP performance with different refrigerants is developed in this study. Experiments are conducted to validate the theoretical model. The simulation and the experimental results are found to be in good agreement. The ASHP performance indices, such as compression ratio (CR), discharging temperature (DT) and coefficients of performance (COP), are investigated using R22, R417A, R410A, R134a, R152a, R161 and R1234yf as working fluids. The results show that R152a has an average COP of 2.7% higher than R22, and R161 has an average COP of 1.4% higher than R22. R152a and R161 also have a higher CR but a lower DT than R22 under the same design conditions. In addition, R152a and R161 have ozone depletion potentials (ODP) of zero and extremely low GWPs; thus, they can be candidates to replace R22 in ASHP heating systems. This research provides a reference on refrigerant replacements for ASHP heating systems in North China. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su15129420 |