Classical and Bayesian Inference for the Kavya–Manoharan Generalized Exponential Distribution under Generalized Progressively Hybrid Censored Data

This manuscript focuses on the statistical inference of the Kavya–Manoharan generalized exponential distribution under the generalized type-I progressive hybrid censoring sample (GTI-PHCS). Different classical approaches of estimation, such as maximum likelihood, the maximum product of spacing, leas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-06, Vol.15 (6), p.1193
Hauptverfasser: Abdelwahab, Mahmoud M., Ghorbal, Anis Ben, Hassan, Amal S., Elgarhy, Mohammed, Almetwally, Ehab M., Hashem, Atef F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This manuscript focuses on the statistical inference of the Kavya–Manoharan generalized exponential distribution under the generalized type-I progressive hybrid censoring sample (GTI-PHCS). Different classical approaches of estimation, such as maximum likelihood, the maximum product of spacing, least squares (LS), weighted LS, and percentiles under GTI-PHCS, are investigated. Based on the squared error and linear exponential loss functions, the Bayes estimates for the unknown parameters utilizing separate gamma priors under GTI-PHCS have been derived. Point and interval estimates of unknown parameters are developed. We carry out a simulation using the Monte Carlo algorithm to show the performance of the inferential procedures. Finally, real-world data collection is examined for illustration purposes.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15061193