Study on Probabilistic Load Forecasting Model and Its Improvements
The current research on probabilistic load forecasting models mostly combines machine learning algorithms and quantile regression methods to construct quantile models. This paper first summarizes and combs the commonly used quantile regression forecast models. Combined with the actual data, we analy...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2023-06, Vol.2527 (1), p.12073 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12073 |
container_title | Journal of physics. Conference series |
container_volume | 2527 |
creator | Chen, Huican Chao, Zhu Duan, Qinwei Tang, Xuchen Xie, Xiangzhong Lai, Xiaowen Wen, Yakun |
description | The current research on probabilistic load forecasting models mostly combines machine learning algorithms and quantile regression methods to construct quantile models. This paper first summarizes and combs the commonly used quantile regression forecast models. Combined with the actual data, we analyzed the main factors affecting the performance of probabilistic load forecasting and attempted to elaborate on the influencing mechanism. Then, a quantile regression probabilistic load forecasting strategy based on sample weight is designed. According to the analysis and experimental verification, we propose the future research direction for probabilistic load forecasting. |
doi_str_mv | 10.1088/1742-6596/2527/1/012073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829839901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829839901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2743-ab1ad67b40f885069f90118cf69936823fe6d206c10a5b3fc18e67d72bb1a0ec3</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKe_wYB3Qm0-1iS91OF0MnEwvQ5pPqRja2rSCfv3plQmguB7k_clzzkHDgCXGN1gJESO-YRkrChZTgrCc5wjTBCnR2B0-Dk-7EKcgrMY1wjRNHwE7lbdzuyhb-Ay-EpV9aaOXa3hwisDZz5YrdLdvMNnb-wGqsbAeRfhfNsG_2m3tuniOThxahPtxfc7Bm-z-9fpY7Z4eZhPbxeZJnxCM1VhZRivJsgJUSBWuhJhLLRjZUmZINRZZghiGiNVVNRpLCzjhpMqCZHVdAyuBt8U_bGzsZNrvwtNipREkFLQMhkmig-UDj7GYJ1sQ71VYS8xkn1hsq9C9rXIvjCJ5VBYUl4Pytq3P9ZPy-nqNyhb4xJM_4D_i_gC-Lx5gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829839901</pqid></control><display><type>article</type><title>Study on Probabilistic Load Forecasting Model and Its Improvements</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Huican ; Chao, Zhu ; Duan, Qinwei ; Tang, Xuchen ; Xie, Xiangzhong ; Lai, Xiaowen ; Wen, Yakun</creator><creatorcontrib>Chen, Huican ; Chao, Zhu ; Duan, Qinwei ; Tang, Xuchen ; Xie, Xiangzhong ; Lai, Xiaowen ; Wen, Yakun</creatorcontrib><description>The current research on probabilistic load forecasting models mostly combines machine learning algorithms and quantile regression methods to construct quantile models. This paper first summarizes and combs the commonly used quantile regression forecast models. Combined with the actual data, we analyzed the main factors affecting the performance of probabilistic load forecasting and attempted to elaborate on the influencing mechanism. Then, a quantile regression probabilistic load forecasting strategy based on sample weight is designed. According to the analysis and experimental verification, we propose the future research direction for probabilistic load forecasting.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2527/1/012073</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Forecasting ; Machine learning ; Mathematical models ; Physics ; Regression ; Statistical analysis</subject><ispartof>Journal of physics. Conference series, 2023-06, Vol.2527 (1), p.12073</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2743-ab1ad67b40f885069f90118cf69936823fe6d206c10a5b3fc18e67d72bb1a0ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2527/1/012073/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Chen, Huican</creatorcontrib><creatorcontrib>Chao, Zhu</creatorcontrib><creatorcontrib>Duan, Qinwei</creatorcontrib><creatorcontrib>Tang, Xuchen</creatorcontrib><creatorcontrib>Xie, Xiangzhong</creatorcontrib><creatorcontrib>Lai, Xiaowen</creatorcontrib><creatorcontrib>Wen, Yakun</creatorcontrib><title>Study on Probabilistic Load Forecasting Model and Its Improvements</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The current research on probabilistic load forecasting models mostly combines machine learning algorithms and quantile regression methods to construct quantile models. This paper first summarizes and combs the commonly used quantile regression forecast models. Combined with the actual data, we analyzed the main factors affecting the performance of probabilistic load forecasting and attempted to elaborate on the influencing mechanism. Then, a quantile regression probabilistic load forecasting strategy based on sample weight is designed. According to the analysis and experimental verification, we propose the future research direction for probabilistic load forecasting.</description><subject>Algorithms</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Regression</subject><subject>Statistical analysis</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAYhYMoOKe_wYB3Qm0-1iS91OF0MnEwvQ5pPqRja2rSCfv3plQmguB7k_clzzkHDgCXGN1gJESO-YRkrChZTgrCc5wjTBCnR2B0-Dk-7EKcgrMY1wjRNHwE7lbdzuyhb-Ay-EpV9aaOXa3hwisDZz5YrdLdvMNnb-wGqsbAeRfhfNsG_2m3tuniOThxahPtxfc7Bm-z-9fpY7Z4eZhPbxeZJnxCM1VhZRivJsgJUSBWuhJhLLRjZUmZINRZZghiGiNVVNRpLCzjhpMqCZHVdAyuBt8U_bGzsZNrvwtNipREkFLQMhkmig-UDj7GYJ1sQ71VYS8xkn1hsq9C9rXIvjCJ5VBYUl4Pytq3P9ZPy-nqNyhb4xJM_4D_i_gC-Lx5gw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chen, Huican</creator><creator>Chao, Zhu</creator><creator>Duan, Qinwei</creator><creator>Tang, Xuchen</creator><creator>Xie, Xiangzhong</creator><creator>Lai, Xiaowen</creator><creator>Wen, Yakun</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230601</creationdate><title>Study on Probabilistic Load Forecasting Model and Its Improvements</title><author>Chen, Huican ; Chao, Zhu ; Duan, Qinwei ; Tang, Xuchen ; Xie, Xiangzhong ; Lai, Xiaowen ; Wen, Yakun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2743-ab1ad67b40f885069f90118cf69936823fe6d206c10a5b3fc18e67d72bb1a0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Regression</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huican</creatorcontrib><creatorcontrib>Chao, Zhu</creatorcontrib><creatorcontrib>Duan, Qinwei</creatorcontrib><creatorcontrib>Tang, Xuchen</creatorcontrib><creatorcontrib>Xie, Xiangzhong</creatorcontrib><creatorcontrib>Lai, Xiaowen</creatorcontrib><creatorcontrib>Wen, Yakun</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huican</au><au>Chao, Zhu</au><au>Duan, Qinwei</au><au>Tang, Xuchen</au><au>Xie, Xiangzhong</au><au>Lai, Xiaowen</au><au>Wen, Yakun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Probabilistic Load Forecasting Model and Its Improvements</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>2527</volume><issue>1</issue><spage>12073</spage><pages>12073-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The current research on probabilistic load forecasting models mostly combines machine learning algorithms and quantile regression methods to construct quantile models. This paper first summarizes and combs the commonly used quantile regression forecast models. Combined with the actual data, we analyzed the main factors affecting the performance of probabilistic load forecasting and attempted to elaborate on the influencing mechanism. Then, a quantile regression probabilistic load forecasting strategy based on sample weight is designed. According to the analysis and experimental verification, we propose the future research direction for probabilistic load forecasting.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2527/1/012073</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2023-06, Vol.2527 (1), p.12073 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2829839901 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Forecasting Machine learning Mathematical models Physics Regression Statistical analysis |
title | Study on Probabilistic Load Forecasting Model and Its Improvements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Probabilistic%20Load%20Forecasting%20Model%20and%20Its%20Improvements&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Chen,%20Huican&rft.date=2023-06-01&rft.volume=2527&rft.issue=1&rft.spage=12073&rft.pages=12073-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2527/1/012073&rft_dat=%3Cproquest_cross%3E2829839901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829839901&rft_id=info:pmid/&rfr_iscdi=true |