Study on Probabilistic Load Forecasting Model and Its Improvements

The current research on probabilistic load forecasting models mostly combines machine learning algorithms and quantile regression methods to construct quantile models. This paper first summarizes and combs the commonly used quantile regression forecast models. Combined with the actual data, we analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2023-06, Vol.2527 (1), p.12073
Hauptverfasser: Chen, Huican, Chao, Zhu, Duan, Qinwei, Tang, Xuchen, Xie, Xiangzhong, Lai, Xiaowen, Wen, Yakun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current research on probabilistic load forecasting models mostly combines machine learning algorithms and quantile regression methods to construct quantile models. This paper first summarizes and combs the commonly used quantile regression forecast models. Combined with the actual data, we analyzed the main factors affecting the performance of probabilistic load forecasting and attempted to elaborate on the influencing mechanism. Then, a quantile regression probabilistic load forecasting strategy based on sample weight is designed. According to the analysis and experimental verification, we propose the future research direction for probabilistic load forecasting.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2527/1/012073