An AR Application for the Efficient Construction of Water Pipes Buried Underground

Unlike other civil engineering works, water pipe works require digging out before construction because the construction site is buried. The AR application is a system that displays buried objects in the ground in three dimensions when users hold a device such as a smartphone over the ground, using i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-06, Vol.12 (12), p.2634
Hauptverfasser: Inoue, Koki, Ogake, Shuichiro, Kobayashi, Kazuma, Tomura, Toyoaki, Mitsui, Satoshi, Satake, Toshifumi, Igo, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unlike other civil engineering works, water pipe works require digging out before construction because the construction site is buried. The AR application is a system that displays buried objects in the ground in three dimensions when users hold a device such as a smartphone over the ground, using images from the smartphone. The system also registers new buried objects when they are updated. The target of this project is water pipes, which are the most familiar of all buried structures. The system has the following functions: “registration and display of new water pipe information” and “acquisition and display of current location coordinate information.” By applying the plane detection function to data acquired from a camera mounted on a smartphone, the system can easily register and display a water pipe model horizontally to the ground. The system does not require a reference marker because it uses GPS and the plane detection function. In the future, the system will support the visualization and registration of not only water pipes but also other underground infrastructures and will play an active role in the rapid restoration of infrastructure after a large-scale disaster through the realization of a buried-object 3D MAP platform.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12122634