Atmospheric Pressure Mass Spectrometry by Single-Mode Nanoelectromechanical Systems

Weighing particles above MegaDalton mass range has been a persistent challenge in commercial mass spectrometry. Recently, nanoelectromechanical systems-based mass spectrometry (NEMS-MS) has shown remarkable performance in this mass range, especially with the advance of performing mass spectrometry u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Kaynak, Batuhan E, Alkhaled, Mohammed, Kartal, Enise, Yanik, Cenk, M Selim Hanay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weighing particles above MegaDalton mass range has been a persistent challenge in commercial mass spectrometry. Recently, nanoelectromechanical systems-based mass spectrometry (NEMS-MS) has shown remarkable performance in this mass range, especially with the advance of performing mass spectrometry under entirely atmospheric conditions. This advance reduces the overall complexity and cost, while improving the limit of detection. However, this technique required the tracking of two mechanical modes, and the accurate knowledge of mode shapes which may deviate from their ideal values especially due to air damping. Here, we used a NEMS architecture with a central platform, which enables the calculation of mass by single mode measurements. Experiments were conducted using polystyrene and gold nanoparticles to demonstrate the successful acquisition of mass spectra using a single mode, with improved areal capture efficiency. This advance represents a step forward in NEMS-MS, bringing it closer to becoming a practical application for mass sensing of nanoparticles.
ISSN:2331-8422