Asymptotic stability of a nonlinear wave for an outflow problem of the bipolar Navier–Stokes–Poisson system under large initial perturbation

In this paper, we study the time-asymptotic behavior of solutions to an outflow problem for the one-dimensional bipolar Navier–Stokes–Poisson system in the half space. First, we make some suitable assumptions on the boundary data and space-asymptotic states such that the time-asymptotic state of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2023-08, Vol.74 (4), Article 146
Hauptverfasser: Wu, Qiwei, Hou, Xiaofeng, Zhu, Peicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the time-asymptotic behavior of solutions to an outflow problem for the one-dimensional bipolar Navier–Stokes–Poisson system in the half space. First, we make some suitable assumptions on the boundary data and space-asymptotic states such that the time-asymptotic state of the solution is a nonlinear wave, which is the superposition of the transonic stationary solution and the 2-rarefaction wave. Next, we show the stability of this nonlinear wave under a class of large initial perturbation, provided that the strength of the transonic stationary solution is small enough, while the amplitude of the 2-rarefaction wave can be arbitrarily large. The proof is completed by a delicate energy method and a continuation argument. The key point is to derive the positive upper and lower bounds of the particle densities.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-023-02029-2