Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials

The fracturing process in geomaterials is studied to characterize a potential host rock for radioactive waste, such as the kaolinite-rich Opalinus Clay formation. Because of its sedimentary genesis, this rock can be considered as a transversely isotropic geomaterial. A semi-circular bending test is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2023-07, Vol.35 (4), p.1417-1432
Hauptverfasser: Dimitri, Rossana, Rinaldi, Martina, Trullo, Marco, Tornabene, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1432
container_issue 4
container_start_page 1417
container_title Continuum mechanics and thermodynamics
container_volume 35
creator Dimitri, Rossana
Rinaldi, Martina
Trullo, Marco
Tornabene, Francesco
description The fracturing process in geomaterials is studied to characterize a potential host rock for radioactive waste, such as the kaolinite-rich Opalinus Clay formation. Because of its sedimentary genesis, this rock can be considered as a transversely isotropic geomaterial. A semi-circular bending test is here modeled based on the eXtended Finite Element Method (XFEM), to check for the formation and propagation of cracks in the rock, with a particular focus on the effect of notch dimensions and scale effects on the fracturing response of the specimen in terms of peak load. Starting with the XFEM-based results, a novel analytical formulation is also proposed to approximate the response of the material in terms of load-crack mouth opening displacement. The proposed formulation is also capable to provide a reliable estimate of the peak value and time history response, compared to some experimental predictions from literature, starting from a predefined value of initial notch depth, which could represent a useful theoretical tool for design purposes.
doi_str_mv 10.1007/s00161-022-01141-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2828539471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754308879</galeid><sourcerecordid>A754308879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-e13988d956ed71cfa7123e588291fcc2aea2c157ae09bb79cb76f2e7d39959d13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFz6uZZNNsjqX4BYIXPYdsdtKmtJs1SQX_vWlX8CZzGObjGd55CbkBegeUyvtEKcyhpozVFKCBujkhM2h4KZVQp2RGFRc1gBTn5CKlDS2QEnxGuvc1hojZW7OtzNBXNuzGfTbZh6F0_PCFKfvVsa6Cq_IaKxeNzfvoh1XV4dp8-RAPIzP4FHIMo7fVCsPOZIzebNMVOXMl4fVvviQfjw_vy-f69e3pZbl4rW1DWa4RuGrbXok59hKsMxIYR9G2TIGzlhk0zIKQBqnqOqlsJ-eOoey5Ki_2wC_J7XR3jOFzX2TrTdjH8kXSrGWt4KqRh627aWtltqj94IpkY0v0uPM2DOh86S-kaDhtW6kKwCbAxpBSRKfH6Hcmfmug-mC-nszXxXx9NF83BeITlMaDTxj_tPxD_QDhUoj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828539471</pqid></control><display><type>article</type><title>Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials</title><source>SpringerNature Journals</source><creator>Dimitri, Rossana ; Rinaldi, Martina ; Trullo, Marco ; Tornabene, Francesco</creator><creatorcontrib>Dimitri, Rossana ; Rinaldi, Martina ; Trullo, Marco ; Tornabene, Francesco</creatorcontrib><description>The fracturing process in geomaterials is studied to characterize a potential host rock for radioactive waste, such as the kaolinite-rich Opalinus Clay formation. Because of its sedimentary genesis, this rock can be considered as a transversely isotropic geomaterial. A semi-circular bending test is here modeled based on the eXtended Finite Element Method (XFEM), to check for the formation and propagation of cracks in the rock, with a particular focus on the effect of notch dimensions and scale effects on the fracturing response of the specimen in terms of peak load. Starting with the XFEM-based results, a novel analytical formulation is also proposed to approximate the response of the material in terms of load-crack mouth opening displacement. The proposed formulation is also capable to provide a reliable estimate of the peak value and time history response, compared to some experimental predictions from literature, starting from a predefined value of initial notch depth, which could represent a useful theoretical tool for design purposes.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-022-01141-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Anisotropy ; Classical and Continuum Physics ; Crack propagation ; Engineering Thermodynamics ; Finite element analysis ; Finite element method ; Fracture mechanics ; Fracturing ; Geomaterials ; Heat and Mass Transfer ; Investigations ; Kaolinite ; Laboratories ; Load ; Original Article ; Peak load ; Physics ; Physics and Astronomy ; Propagation ; Radioactive wastes ; Rocks ; Structural Materials ; Theoretical and Applied Mechanics</subject><ispartof>Continuum mechanics and thermodynamics, 2023-07, Vol.35 (4), p.1417-1432</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-e13988d956ed71cfa7123e588291fcc2aea2c157ae09bb79cb76f2e7d39959d13</citedby><cites>FETCH-LOGICAL-c402t-e13988d956ed71cfa7123e588291fcc2aea2c157ae09bb79cb76f2e7d39959d13</cites><orcidid>0000-0001-7153-4307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-022-01141-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-022-01141-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dimitri, Rossana</creatorcontrib><creatorcontrib>Rinaldi, Martina</creatorcontrib><creatorcontrib>Trullo, Marco</creatorcontrib><creatorcontrib>Tornabene, Francesco</creatorcontrib><title>Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>The fracturing process in geomaterials is studied to characterize a potential host rock for radioactive waste, such as the kaolinite-rich Opalinus Clay formation. Because of its sedimentary genesis, this rock can be considered as a transversely isotropic geomaterial. A semi-circular bending test is here modeled based on the eXtended Finite Element Method (XFEM), to check for the formation and propagation of cracks in the rock, with a particular focus on the effect of notch dimensions and scale effects on the fracturing response of the specimen in terms of peak load. Starting with the XFEM-based results, a novel analytical formulation is also proposed to approximate the response of the material in terms of load-crack mouth opening displacement. The proposed formulation is also capable to provide a reliable estimate of the peak value and time history response, compared to some experimental predictions from literature, starting from a predefined value of initial notch depth, which could represent a useful theoretical tool for design purposes.</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Classical and Continuum Physics</subject><subject>Crack propagation</subject><subject>Engineering Thermodynamics</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracturing</subject><subject>Geomaterials</subject><subject>Heat and Mass Transfer</subject><subject>Investigations</subject><subject>Kaolinite</subject><subject>Laboratories</subject><subject>Load</subject><subject>Original Article</subject><subject>Peak load</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Radioactive wastes</subject><subject>Rocks</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWD_-gKcFz6uZZNNsjqX4BYIXPYdsdtKmtJs1SQX_vWlX8CZzGObjGd55CbkBegeUyvtEKcyhpozVFKCBujkhM2h4KZVQp2RGFRc1gBTn5CKlDS2QEnxGuvc1hojZW7OtzNBXNuzGfTbZh6F0_PCFKfvVsa6Cq_IaKxeNzfvoh1XV4dp8-RAPIzP4FHIMo7fVCsPOZIzebNMVOXMl4fVvviQfjw_vy-f69e3pZbl4rW1DWa4RuGrbXok59hKsMxIYR9G2TIGzlhk0zIKQBqnqOqlsJ-eOoey5Ki_2wC_J7XR3jOFzX2TrTdjH8kXSrGWt4KqRh627aWtltqj94IpkY0v0uPM2DOh86S-kaDhtW6kKwCbAxpBSRKfH6Hcmfmug-mC-nszXxXx9NF83BeITlMaDTxj_tPxD_QDhUoj0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Dimitri, Rossana</creator><creator>Rinaldi, Martina</creator><creator>Trullo, Marco</creator><creator>Tornabene, Francesco</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7153-4307</orcidid></search><sort><creationdate>20230701</creationdate><title>Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials</title><author>Dimitri, Rossana ; Rinaldi, Martina ; Trullo, Marco ; Tornabene, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-e13988d956ed71cfa7123e588291fcc2aea2c157ae09bb79cb76f2e7d39959d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Classical and Continuum Physics</topic><topic>Crack propagation</topic><topic>Engineering Thermodynamics</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracturing</topic><topic>Geomaterials</topic><topic>Heat and Mass Transfer</topic><topic>Investigations</topic><topic>Kaolinite</topic><topic>Laboratories</topic><topic>Load</topic><topic>Original Article</topic><topic>Peak load</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Radioactive wastes</topic><topic>Rocks</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitri, Rossana</creatorcontrib><creatorcontrib>Rinaldi, Martina</creatorcontrib><creatorcontrib>Trullo, Marco</creatorcontrib><creatorcontrib>Tornabene, Francesco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimitri, Rossana</au><au>Rinaldi, Martina</au><au>Trullo, Marco</au><au>Tornabene, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>1417</spage><epage>1432</epage><pages>1417-1432</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>The fracturing process in geomaterials is studied to characterize a potential host rock for radioactive waste, such as the kaolinite-rich Opalinus Clay formation. Because of its sedimentary genesis, this rock can be considered as a transversely isotropic geomaterial. A semi-circular bending test is here modeled based on the eXtended Finite Element Method (XFEM), to check for the formation and propagation of cracks in the rock, with a particular focus on the effect of notch dimensions and scale effects on the fracturing response of the specimen in terms of peak load. Starting with the XFEM-based results, a novel analytical formulation is also proposed to approximate the response of the material in terms of load-crack mouth opening displacement. The proposed formulation is also capable to provide a reliable estimate of the peak value and time history response, compared to some experimental predictions from literature, starting from a predefined value of initial notch depth, which could represent a useful theoretical tool for design purposes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-022-01141-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7153-4307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2023-07, Vol.35 (4), p.1417-1432
issn 0935-1175
1432-0959
language eng
recordid cdi_proquest_journals_2828539471
source SpringerNature Journals
subjects Analysis
Anisotropy
Classical and Continuum Physics
Crack propagation
Engineering Thermodynamics
Finite element analysis
Finite element method
Fracture mechanics
Fracturing
Geomaterials
Heat and Mass Transfer
Investigations
Kaolinite
Laboratories
Load
Original Article
Peak load
Physics
Physics and Astronomy
Propagation
Radioactive wastes
Rocks
Structural Materials
Theoretical and Applied Mechanics
title Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20computational%20investigation%20of%20the%20fracturing%20behavior%20of%20anisotropic%20geomaterials&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Dimitri,%20Rossana&rft.date=2023-07-01&rft.volume=35&rft.issue=4&rft.spage=1417&rft.epage=1432&rft.pages=1417-1432&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-022-01141-4&rft_dat=%3Cgale_proqu%3EA754308879%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828539471&rft_id=info:pmid/&rft_galeid=A754308879&rfr_iscdi=true