Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials

The fracturing process in geomaterials is studied to characterize a potential host rock for radioactive waste, such as the kaolinite-rich Opalinus Clay formation. Because of its sedimentary genesis, this rock can be considered as a transversely isotropic geomaterial. A semi-circular bending test is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2023-07, Vol.35 (4), p.1417-1432
Hauptverfasser: Dimitri, Rossana, Rinaldi, Martina, Trullo, Marco, Tornabene, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fracturing process in geomaterials is studied to characterize a potential host rock for radioactive waste, such as the kaolinite-rich Opalinus Clay formation. Because of its sedimentary genesis, this rock can be considered as a transversely isotropic geomaterial. A semi-circular bending test is here modeled based on the eXtended Finite Element Method (XFEM), to check for the formation and propagation of cracks in the rock, with a particular focus on the effect of notch dimensions and scale effects on the fracturing response of the specimen in terms of peak load. Starting with the XFEM-based results, a novel analytical formulation is also proposed to approximate the response of the material in terms of load-crack mouth opening displacement. The proposed formulation is also capable to provide a reliable estimate of the peak value and time history response, compared to some experimental predictions from literature, starting from a predefined value of initial notch depth, which could represent a useful theoretical tool for design purposes.
ISSN:0935-1175
1432-0959
DOI:10.1007/s00161-022-01141-4