High-dimensional density estimation with tensorizing flow

We propose the tensorizing flow method for estimating high-dimensional probability density functions from observed data. Our method combines the optimization-less feature of the tensor-train with the flexibility of flow-based generative models, providing an accurate and efficient approach for densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the Mathematical Sciences (Print) 2023-09, Vol.10 (3), Article 30
Hauptverfasser: Ren, Yinuo, Zhao, Hongli, Khoo, Yuehaw, Ying, Lexing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose the tensorizing flow method for estimating high-dimensional probability density functions from observed data. Our method combines the optimization-less feature of the tensor-train with the flexibility of flow-based generative models, providing an accurate and efficient approach for density estimation. Specifically, our method first constructs an approximate density in the tensor-train form by efficiently solving the tensor cores from a linear system based on kernel density estimators of low-dimensional marginals. Subsequently, a continuous-time flow model is trained from this tensor-train density to the observed empirical distribution using maximum likelihood estimation. Numerical results are presented to demonstrate the performance of our method.
ISSN:2522-0144
2197-9847
DOI:10.1007/s40687-023-00395-x