Deterministic Identification Over Multiple-Access Channels
Deterministic identification over K-input multiple-access channels with average input cost constraints is considered. The capacity region for deterministic identification is determined for an average-error criterion, where arbitrarily large codes are achievable. For a maximal-error criterion, upper...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deterministic identification over K-input multiple-access channels with average input cost constraints is considered. The capacity region for deterministic identification is determined for an average-error criterion, where arbitrarily large codes are achievable. For a maximal-error criterion, upper and lower bounds on the capacity region are derived. The bounds coincide if all average partial point-to-point channels are injective under the input constraint, i.e. all inputs at one terminal are mapped to distinct output distributions, if averaged over the inputs at all other terminals. The achievability is proved by treating the MAC as an arbitrarily varying channel with average state constraints. For injective average channels, the capacity region is a hyperrectangle. The modulo-2 and modulo-3 binary adder MAC are presented as examples of channels which are injective under suitable input constraints. The binary multiplier MAC is presented as an example of a non-injective channel, where the achievable identification rate region still includes the Shannon capacity region. |
---|---|
ISSN: | 2331-8422 |