Regularity of multipliers and second-order optimality conditions for semilinear parabolic optimal control problems with mixed pointwise constraints

A class of optimal control problems governed by semilinear parabolic equations with mixed pointwise constraints is considered. We give some criteria under which the first and second-order optimality conditions are of KKT-type. We then prove that the Lagrange multipliers belong to \(L^p\)-spaces. Mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Huynh Khanh, Bui, Trong Kien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of optimal control problems governed by semilinear parabolic equations with mixed pointwise constraints is considered. We give some criteria under which the first and second-order optimality conditions are of KKT-type. We then prove that the Lagrange multipliers belong to \(L^p\)-spaces. Moreover, we show that if the initial value is good enough and boundary \(\partial\Omega\) has a property of positive geometric density, then multipliers and optimal solutions are H\"{o}lder continuous.
ISSN:2331-8422