Dual-Thread Gated Recurrent Unit for Gear Remaining Useful Life Prediction

Remaining useful life (RUL) prediction can provide a foundation for the operation and maintenance of industrial equipment. In order to improve the predictive ability for the complex degradation trajectory, a new dual-thread gated recurrent unit (DTGRU) is explored. It uses a dual-thread learning str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-07, Vol.19 (7), p.8307-8318
Hauptverfasser: Zhou, Jianghong, Qin, Yi, Luo, Jun, Wang, Shilong, Zhu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remaining useful life (RUL) prediction can provide a foundation for the operation and maintenance of industrial equipment. In order to improve the predictive ability for the complex degradation trajectory, a new dual-thread gated recurrent unit (DTGRU) is explored. It uses a dual-thread learning strategy to mine the stationary and nonstationary information from the input data and the difference of hidden states at two adjacent time steps. Then the state transition updating formulas of DTGRU are derived. Using the collected gear vibration signals and degradation-trend-constrained variational autoencoder, the gear health indicator (HI) is constructed. Based on the constructed HI and DTGRU, a novel RUL prediction method is developed. Via multiple gear life-cycle datasets, the effectiveness of the DTGRU-based RUL prediction approach is verified. Furthermore, compared with the existing typical prediction methods, the experimental results show that DTGRU has higher predictive ability in terms of HI fitting precision and RUL prediction performance.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2022.3217758