Roadmap on exsolution for energy applications
Over the last decade, exsolution has emerged as a powerful new method for decorating oxide supports with uniformly dispersed nanoparticles for energy and catalytic applications. Due to their exceptional anchorage, resilience to various degradation mechanisms, as well as numerous ways in which they c...
Gespeichert in:
Veröffentlicht in: | JPhys Energy 2023-07, Vol.5 (3), p.31501 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the last decade, exsolution has emerged as a powerful new method for decorating oxide supports with uniformly dispersed nanoparticles for energy and catalytic applications. Due to their exceptional anchorage, resilience to various degradation mechanisms, as well as numerous ways in which they can be produced, transformed and applied, exsolved nanoparticles have set new standards for nanoparticles in terms of activity, durability and functionality. In conjunction with multifunctional supports such as perovskite oxides, exsolution becomes a powerful platform for the design of advanced energy materials. In the following sections, we review the current status of the exsolution approach, seeking to facilitate transfer of ideas between different fields of application. We also explore future directions of research, particularly noting the multi-scale development required to take the concept forward, from fundamentals through operando studies to pilot scale demonstrations. |
---|---|
ISSN: | 2515-7655 2515-7655 |
DOI: | 10.1088/2515-7655/acd146 |