Semiclassical Estimates for Eigenvalue Means of Laplacians on Spheres

We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2023-09, Vol.33 (9), Article 280
Hauptverfasser: Buoso, Davide, Luzzini, Paolo, Provenzano, Luigi, Stubbe, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of S d . We also prove a Berezin–Li–Yau inequality for domains contained in the hemisphere S + 2 .
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-023-01326-6