On the Comparison of the Distinguishing Coloring and the Locating Coloring of Graphs

Let G be a simple connected graph. Then, χ L ( G ) and χ D ( G ) will denote the locating chromatic number and the distinguishing chromatic number of G , respectively. In this paper, we investigate a comparison between χ L ( G ) and χ D ( G ) . We prove that χ D ( G ) ≤ χ L ( G ) . Moreover, we dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2023-10, Vol.20 (5), Article 252
Hauptverfasser: Korivand, M., Erfanian, A., Baskoro, Edy Tri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a simple connected graph. Then, χ L ( G ) and χ D ( G ) will denote the locating chromatic number and the distinguishing chromatic number of G , respectively. In this paper, we investigate a comparison between χ L ( G ) and χ D ( G ) . We prove that χ D ( G ) ≤ χ L ( G ) . Moreover, we determine some types of graphs whose locating and distinguishing chromatic numbers are equal. Specially, we characterize all graphs G of order n with property that χ D ( G ) = χ L ( G ) = k , where k = 3 , n - 2 or n - 1 . In addition, we construct graphs G with χ D ( G ) = n and χ L ( G ) = m for every 4 ≤ n ≤ m .
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-023-02410-5