On the Linear Arboricity of Graphs with Treewidth at Most Four

The linear arboricity la ( G ) of a graph G is the minimum number of linear forests that partition the edges of G . Akiyama, Exoo and Harary conjectured that ⌈ Δ 2 ⌉ ≤ l a ( G ) ≤ ⌈ Δ + 1 2 ⌉ for any graph G with maximum degree Δ , and proved the conjecture holds for forests. This conjecture has bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2023-08, Vol.39 (4), Article 70
Hauptverfasser: Chen, Hong-Yu, Lai, Hong-Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The linear arboricity la ( G ) of a graph G is the minimum number of linear forests that partition the edges of G . Akiyama, Exoo and Harary conjectured that ⌈ Δ 2 ⌉ ≤ l a ( G ) ≤ ⌈ Δ + 1 2 ⌉ for any graph G with maximum degree Δ , and proved the conjecture holds for forests. This conjecture has been verified for certain graph families with treewidth at most 3. In the paper we improve these former results by validating the conjecture for all graphs with treewidth at most 4.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-023-02673-5