Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes
Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2023-06, Vol.11 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 11 |
creator | Cianci, Salvatore Blundo, Elena Tuzi, Federico Pettinari, Giorgio Olkowska‐Pucko, Katarzyna Parmenopoulou, Eirini Peeters, Djero B. L. Miriametro, Antonio Taniguchi, Takashi Watanabe, Kenji Babinski, Adam Molas, Maciej R. Felici, Marco Polimeni, Antonio |
description | Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into photonic structures. Here, the formation of regular arrays of strained hydrogen‐filled one‐layer‐thick micro‐domes obtained by H‐ion irradiation and lithography‐based approaches is reported. Typically, the H2 liquefaction for temperatures T |
doi_str_mv | 10.1002/adom.202202953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2827191568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827191568</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2733-6f6c84508a5868f9773924c52ea3750ce1367ccfea8f0884187e0a5434a2e89b3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOOZefQ743HlJmiZ5nF2dwnRCFR9D7FLXkTa17ZC--RH8jH4SOyZDOLj7w4-744fQJYEpAaDXZu3LKQU6lOLsBI0oUTwgIMjpv_kcTdp2CwBDYCoUI5SktekK41yPY191jXfOrnFaVO_O4qeN73yFk7LoOtu0uKjw5ubx5-s7NnU9YK8pxXNf2vYCneXGtXby18fo5TZ5ju-C5WpxH8-WQU0FY0GUR5kMOUjDZSRzJYYnaJhxag0THDJLWCSyLLdG5iBlSKSwYHjIQkOtVG9sjK4Oe-vGf-xs2-mt3zXVcFJTSQVRhEdyoNSB-iyc7XXdFKVpek1A71XpvSp9VKVn89XDMbFfZsNd3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827191568</pqid></control><display><type>article</type><title>Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cianci, Salvatore ; Blundo, Elena ; Tuzi, Federico ; Pettinari, Giorgio ; Olkowska‐Pucko, Katarzyna ; Parmenopoulou, Eirini ; Peeters, Djero B. L. ; Miriametro, Antonio ; Taniguchi, Takashi ; Watanabe, Kenji ; Babinski, Adam ; Molas, Maciej R. ; Felici, Marco ; Polimeni, Antonio</creator><creatorcontrib>Cianci, Salvatore ; Blundo, Elena ; Tuzi, Federico ; Pettinari, Giorgio ; Olkowska‐Pucko, Katarzyna ; Parmenopoulou, Eirini ; Peeters, Djero B. L. ; Miriametro, Antonio ; Taniguchi, Takashi ; Watanabe, Kenji ; Babinski, Adam ; Molas, Maciej R. ; Felici, Marco ; Polimeni, Antonio</creatorcontrib><description>Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into photonic structures. Here, the formation of regular arrays of strained hydrogen‐filled one‐layer‐thick micro‐domes obtained by H‐ion irradiation and lithography‐based approaches is reported. Typically, the H2 liquefaction for temperatures T<32 K causes the disappearance of the domes preventing their use as potential SPEs. Here, it is shown that the dome deflation can be overcome by hBN heterostructuring, that is by depositing thin hBN flakes on the domes. This leads to the preservation of the dome structure at all temperatures, as found by micro‐Raman and micro‐photoluminescence (µ‐PL) studies. Eventually, spatially controlled hBN‐capped WS2 domes show the appearance, at 5 K, of intense emission lines originating from localized excitons, which are shown to behave as quantum emitters here. The electronic properties of the emitters are addressed by time‐resolved µ‐PL yielding time decays of 1–10 ns, and by magneto‐µ‐PL measurements. The latter provide an exciton magnetic moment a factor of two larger than the value observed in planar strain‐free MLs.
The success of quantum technologies relies on the capability of producing efficient sources of single photons. 2D materials offer the unique opportunity of having such sources on an atomically thin surface from which photons can be extracted very efficiently. It is shown that building micrometric domes of 2D materials provides spatially ordered and scalable arrays of quantum emitters.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202953</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Domes ; Emitters ; Excitons ; heterostructures ; Ion irradiation ; Liquefaction ; Magnetic moments ; Materials science ; Optics ; Photoluminescence ; Photons ; single photon emitters ; Strain ; two‐dimensional materials</subject><ispartof>Advanced optical materials, 2023-06, Vol.11 (12), p.n/a</ispartof><rights>2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0977-2301 ; 0000-0002-2017-4265 ; 0000-0003-3701-8119 ; 0000-0002-5591-4825 ; 0000-0002-1467-3105 ; 0000-0002-6653-3104 ; 0000-0002-6036-7096 ; 0000-0002-5516-9415 ; 0000-0003-0423-4798 ; 0000-0003-0187-3770 ; 0000-0003-4020-369X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202202953$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202202953$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Cianci, Salvatore</creatorcontrib><creatorcontrib>Blundo, Elena</creatorcontrib><creatorcontrib>Tuzi, Federico</creatorcontrib><creatorcontrib>Pettinari, Giorgio</creatorcontrib><creatorcontrib>Olkowska‐Pucko, Katarzyna</creatorcontrib><creatorcontrib>Parmenopoulou, Eirini</creatorcontrib><creatorcontrib>Peeters, Djero B. L.</creatorcontrib><creatorcontrib>Miriametro, Antonio</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Babinski, Adam</creatorcontrib><creatorcontrib>Molas, Maciej R.</creatorcontrib><creatorcontrib>Felici, Marco</creatorcontrib><creatorcontrib>Polimeni, Antonio</creatorcontrib><title>Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes</title><title>Advanced optical materials</title><description>Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into photonic structures. Here, the formation of regular arrays of strained hydrogen‐filled one‐layer‐thick micro‐domes obtained by H‐ion irradiation and lithography‐based approaches is reported. Typically, the H2 liquefaction for temperatures T<32 K causes the disappearance of the domes preventing their use as potential SPEs. Here, it is shown that the dome deflation can be overcome by hBN heterostructuring, that is by depositing thin hBN flakes on the domes. This leads to the preservation of the dome structure at all temperatures, as found by micro‐Raman and micro‐photoluminescence (µ‐PL) studies. Eventually, spatially controlled hBN‐capped WS2 domes show the appearance, at 5 K, of intense emission lines originating from localized excitons, which are shown to behave as quantum emitters here. The electronic properties of the emitters are addressed by time‐resolved µ‐PL yielding time decays of 1–10 ns, and by magneto‐µ‐PL measurements. The latter provide an exciton magnetic moment a factor of two larger than the value observed in planar strain‐free MLs.
The success of quantum technologies relies on the capability of producing efficient sources of single photons. 2D materials offer the unique opportunity of having such sources on an atomically thin surface from which photons can be extracted very efficiently. It is shown that building micrometric domes of 2D materials provides spatially ordered and scalable arrays of quantum emitters.</description><subject>Domes</subject><subject>Emitters</subject><subject>Excitons</subject><subject>heterostructures</subject><subject>Ion irradiation</subject><subject>Liquefaction</subject><subject>Magnetic moments</subject><subject>Materials science</subject><subject>Optics</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>single photon emitters</subject><subject>Strain</subject><subject>two‐dimensional materials</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkFFLwzAQx4MoOOZefQ743HlJmiZ5nF2dwnRCFR9D7FLXkTa17ZC--RH8jH4SOyZDOLj7w4-744fQJYEpAaDXZu3LKQU6lOLsBI0oUTwgIMjpv_kcTdp2CwBDYCoUI5SktekK41yPY191jXfOrnFaVO_O4qeN73yFk7LoOtu0uKjw5ubx5-s7NnU9YK8pxXNf2vYCneXGtXby18fo5TZ5ju-C5WpxH8-WQU0FY0GUR5kMOUjDZSRzJYYnaJhxag0THDJLWCSyLLdG5iBlSKSwYHjIQkOtVG9sjK4Oe-vGf-xs2-mt3zXVcFJTSQVRhEdyoNSB-iyc7XXdFKVpek1A71XpvSp9VKVn89XDMbFfZsNd3Q</recordid><startdate>20230619</startdate><enddate>20230619</enddate><creator>Cianci, Salvatore</creator><creator>Blundo, Elena</creator><creator>Tuzi, Federico</creator><creator>Pettinari, Giorgio</creator><creator>Olkowska‐Pucko, Katarzyna</creator><creator>Parmenopoulou, Eirini</creator><creator>Peeters, Djero B. L.</creator><creator>Miriametro, Antonio</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Babinski, Adam</creator><creator>Molas, Maciej R.</creator><creator>Felici, Marco</creator><creator>Polimeni, Antonio</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0977-2301</orcidid><orcidid>https://orcid.org/0000-0002-2017-4265</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-5591-4825</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-6653-3104</orcidid><orcidid>https://orcid.org/0000-0002-6036-7096</orcidid><orcidid>https://orcid.org/0000-0002-5516-9415</orcidid><orcidid>https://orcid.org/0000-0003-0423-4798</orcidid><orcidid>https://orcid.org/0000-0003-0187-3770</orcidid><orcidid>https://orcid.org/0000-0003-4020-369X</orcidid></search><sort><creationdate>20230619</creationdate><title>Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes</title><author>Cianci, Salvatore ; Blundo, Elena ; Tuzi, Federico ; Pettinari, Giorgio ; Olkowska‐Pucko, Katarzyna ; Parmenopoulou, Eirini ; Peeters, Djero B. L. ; Miriametro, Antonio ; Taniguchi, Takashi ; Watanabe, Kenji ; Babinski, Adam ; Molas, Maciej R. ; Felici, Marco ; Polimeni, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2733-6f6c84508a5868f9773924c52ea3750ce1367ccfea8f0884187e0a5434a2e89b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Domes</topic><topic>Emitters</topic><topic>Excitons</topic><topic>heterostructures</topic><topic>Ion irradiation</topic><topic>Liquefaction</topic><topic>Magnetic moments</topic><topic>Materials science</topic><topic>Optics</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>single photon emitters</topic><topic>Strain</topic><topic>two‐dimensional materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Cianci, Salvatore</creatorcontrib><creatorcontrib>Blundo, Elena</creatorcontrib><creatorcontrib>Tuzi, Federico</creatorcontrib><creatorcontrib>Pettinari, Giorgio</creatorcontrib><creatorcontrib>Olkowska‐Pucko, Katarzyna</creatorcontrib><creatorcontrib>Parmenopoulou, Eirini</creatorcontrib><creatorcontrib>Peeters, Djero B. L.</creatorcontrib><creatorcontrib>Miriametro, Antonio</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Babinski, Adam</creatorcontrib><creatorcontrib>Molas, Maciej R.</creatorcontrib><creatorcontrib>Felici, Marco</creatorcontrib><creatorcontrib>Polimeni, Antonio</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cianci, Salvatore</au><au>Blundo, Elena</au><au>Tuzi, Federico</au><au>Pettinari, Giorgio</au><au>Olkowska‐Pucko, Katarzyna</au><au>Parmenopoulou, Eirini</au><au>Peeters, Djero B. L.</au><au>Miriametro, Antonio</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Babinski, Adam</au><au>Molas, Maciej R.</au><au>Felici, Marco</au><au>Polimeni, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes</atitle><jtitle>Advanced optical materials</jtitle><date>2023-06-19</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into photonic structures. Here, the formation of regular arrays of strained hydrogen‐filled one‐layer‐thick micro‐domes obtained by H‐ion irradiation and lithography‐based approaches is reported. Typically, the H2 liquefaction for temperatures T<32 K causes the disappearance of the domes preventing their use as potential SPEs. Here, it is shown that the dome deflation can be overcome by hBN heterostructuring, that is by depositing thin hBN flakes on the domes. This leads to the preservation of the dome structure at all temperatures, as found by micro‐Raman and micro‐photoluminescence (µ‐PL) studies. Eventually, spatially controlled hBN‐capped WS2 domes show the appearance, at 5 K, of intense emission lines originating from localized excitons, which are shown to behave as quantum emitters here. The electronic properties of the emitters are addressed by time‐resolved µ‐PL yielding time decays of 1–10 ns, and by magneto‐µ‐PL measurements. The latter provide an exciton magnetic moment a factor of two larger than the value observed in planar strain‐free MLs.
The success of quantum technologies relies on the capability of producing efficient sources of single photons. 2D materials offer the unique opportunity of having such sources on an atomically thin surface from which photons can be extracted very efficiently. It is shown that building micrometric domes of 2D materials provides spatially ordered and scalable arrays of quantum emitters.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202953</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0977-2301</orcidid><orcidid>https://orcid.org/0000-0002-2017-4265</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-5591-4825</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-6653-3104</orcidid><orcidid>https://orcid.org/0000-0002-6036-7096</orcidid><orcidid>https://orcid.org/0000-0002-5516-9415</orcidid><orcidid>https://orcid.org/0000-0003-0423-4798</orcidid><orcidid>https://orcid.org/0000-0003-0187-3770</orcidid><orcidid>https://orcid.org/0000-0003-4020-369X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2023-06, Vol.11 (12), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2827191568 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Domes Emitters Excitons heterostructures Ion irradiation Liquefaction Magnetic moments Materials science Optics Photoluminescence Photons single photon emitters Strain two‐dimensional materials |
title | Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Controlled%20Single%20Photon%20Emitters%20in%20hBN%E2%80%90Capped%20WS2%20Domes&rft.jtitle=Advanced%20optical%20materials&rft.au=Cianci,%20Salvatore&rft.date=2023-06-19&rft.volume=11&rft.issue=12&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202953&rft_dat=%3Cproquest_wiley%3E2827191568%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827191568&rft_id=info:pmid/&rfr_iscdi=true |