Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes

Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2023-06, Vol.11 (12), p.n/a
Hauptverfasser: Cianci, Salvatore, Blundo, Elena, Tuzi, Federico, Pettinari, Giorgio, Olkowska‐Pucko, Katarzyna, Parmenopoulou, Eirini, Peeters, Djero B. L., Miriametro, Antonio, Taniguchi, Takashi, Watanabe, Kenji, Babinski, Adam, Molas, Maciej R., Felici, Marco, Polimeni, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced optical materials
container_volume 11
creator Cianci, Salvatore
Blundo, Elena
Tuzi, Federico
Pettinari, Giorgio
Olkowska‐Pucko, Katarzyna
Parmenopoulou, Eirini
Peeters, Djero B. L.
Miriametro, Antonio
Taniguchi, Takashi
Watanabe, Kenji
Babinski, Adam
Molas, Maciej R.
Felici, Marco
Polimeni, Antonio
description Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into photonic structures. Here, the formation of regular arrays of strained hydrogen‐filled one‐layer‐thick micro‐domes obtained by H‐ion irradiation and lithography‐based approaches is reported. Typically, the H2 liquefaction for temperatures T
doi_str_mv 10.1002/adom.202202953
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2827191568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827191568</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2733-6f6c84508a5868f9773924c52ea3750ce1367ccfea8f0884187e0a5434a2e89b3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOOZefQ743HlJmiZ5nF2dwnRCFR9D7FLXkTa17ZC--RH8jH4SOyZDOLj7w4-744fQJYEpAaDXZu3LKQU6lOLsBI0oUTwgIMjpv_kcTdp2CwBDYCoUI5SktekK41yPY191jXfOrnFaVO_O4qeN73yFk7LoOtu0uKjw5ubx5-s7NnU9YK8pxXNf2vYCneXGtXby18fo5TZ5ju-C5WpxH8-WQU0FY0GUR5kMOUjDZSRzJYYnaJhxag0THDJLWCSyLLdG5iBlSKSwYHjIQkOtVG9sjK4Oe-vGf-xs2-mt3zXVcFJTSQVRhEdyoNSB-iyc7XXdFKVpek1A71XpvSp9VKVn89XDMbFfZsNd3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827191568</pqid></control><display><type>article</type><title>Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cianci, Salvatore ; Blundo, Elena ; Tuzi, Federico ; Pettinari, Giorgio ; Olkowska‐Pucko, Katarzyna ; Parmenopoulou, Eirini ; Peeters, Djero B. L. ; Miriametro, Antonio ; Taniguchi, Takashi ; Watanabe, Kenji ; Babinski, Adam ; Molas, Maciej R. ; Felici, Marco ; Polimeni, Antonio</creator><creatorcontrib>Cianci, Salvatore ; Blundo, Elena ; Tuzi, Federico ; Pettinari, Giorgio ; Olkowska‐Pucko, Katarzyna ; Parmenopoulou, Eirini ; Peeters, Djero B. L. ; Miriametro, Antonio ; Taniguchi, Takashi ; Watanabe, Kenji ; Babinski, Adam ; Molas, Maciej R. ; Felici, Marco ; Polimeni, Antonio</creatorcontrib><description>Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into photonic structures. Here, the formation of regular arrays of strained hydrogen‐filled one‐layer‐thick micro‐domes obtained by H‐ion irradiation and lithography‐based approaches is reported. Typically, the H2 liquefaction for temperatures T&lt;32 K causes the disappearance of the domes preventing their use as potential SPEs. Here, it is shown that the dome deflation can be overcome by hBN heterostructuring, that is by depositing thin hBN flakes on the domes. This leads to the preservation of the dome structure at all temperatures, as found by micro‐Raman and micro‐photoluminescence (µ‐PL) studies. Eventually, spatially controlled hBN‐capped WS2 domes show the appearance, at 5 K, of intense emission lines originating from localized excitons, which are shown to behave as quantum emitters here. The electronic properties of the emitters are addressed by time‐resolved µ‐PL yielding time decays of 1–10 ns, and by magneto‐µ‐PL measurements. The latter provide an exciton magnetic moment a factor of two larger than the value observed in planar strain‐free MLs. The success of quantum technologies relies on the capability of producing efficient sources of single photons. 2D materials offer the unique opportunity of having such sources on an atomically thin surface from which photons can be extracted very efficiently. It is shown that building micrometric domes of 2D materials provides spatially ordered and scalable arrays of quantum emitters.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202953</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Domes ; Emitters ; Excitons ; heterostructures ; Ion irradiation ; Liquefaction ; Magnetic moments ; Materials science ; Optics ; Photoluminescence ; Photons ; single photon emitters ; Strain ; two‐dimensional materials</subject><ispartof>Advanced optical materials, 2023-06, Vol.11 (12), p.n/a</ispartof><rights>2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0977-2301 ; 0000-0002-2017-4265 ; 0000-0003-3701-8119 ; 0000-0002-5591-4825 ; 0000-0002-1467-3105 ; 0000-0002-6653-3104 ; 0000-0002-6036-7096 ; 0000-0002-5516-9415 ; 0000-0003-0423-4798 ; 0000-0003-0187-3770 ; 0000-0003-4020-369X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202202953$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202202953$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Cianci, Salvatore</creatorcontrib><creatorcontrib>Blundo, Elena</creatorcontrib><creatorcontrib>Tuzi, Federico</creatorcontrib><creatorcontrib>Pettinari, Giorgio</creatorcontrib><creatorcontrib>Olkowska‐Pucko, Katarzyna</creatorcontrib><creatorcontrib>Parmenopoulou, Eirini</creatorcontrib><creatorcontrib>Peeters, Djero B. L.</creatorcontrib><creatorcontrib>Miriametro, Antonio</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Babinski, Adam</creatorcontrib><creatorcontrib>Molas, Maciej R.</creatorcontrib><creatorcontrib>Felici, Marco</creatorcontrib><creatorcontrib>Polimeni, Antonio</creatorcontrib><title>Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes</title><title>Advanced optical materials</title><description>Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into photonic structures. Here, the formation of regular arrays of strained hydrogen‐filled one‐layer‐thick micro‐domes obtained by H‐ion irradiation and lithography‐based approaches is reported. Typically, the H2 liquefaction for temperatures T&lt;32 K causes the disappearance of the domes preventing their use as potential SPEs. Here, it is shown that the dome deflation can be overcome by hBN heterostructuring, that is by depositing thin hBN flakes on the domes. This leads to the preservation of the dome structure at all temperatures, as found by micro‐Raman and micro‐photoluminescence (µ‐PL) studies. Eventually, spatially controlled hBN‐capped WS2 domes show the appearance, at 5 K, of intense emission lines originating from localized excitons, which are shown to behave as quantum emitters here. The electronic properties of the emitters are addressed by time‐resolved µ‐PL yielding time decays of 1–10 ns, and by magneto‐µ‐PL measurements. The latter provide an exciton magnetic moment a factor of two larger than the value observed in planar strain‐free MLs. The success of quantum technologies relies on the capability of producing efficient sources of single photons. 2D materials offer the unique opportunity of having such sources on an atomically thin surface from which photons can be extracted very efficiently. It is shown that building micrometric domes of 2D materials provides spatially ordered and scalable arrays of quantum emitters.</description><subject>Domes</subject><subject>Emitters</subject><subject>Excitons</subject><subject>heterostructures</subject><subject>Ion irradiation</subject><subject>Liquefaction</subject><subject>Magnetic moments</subject><subject>Materials science</subject><subject>Optics</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>single photon emitters</subject><subject>Strain</subject><subject>two‐dimensional materials</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkFFLwzAQx4MoOOZefQ743HlJmiZ5nF2dwnRCFR9D7FLXkTa17ZC--RH8jH4SOyZDOLj7w4-744fQJYEpAaDXZu3LKQU6lOLsBI0oUTwgIMjpv_kcTdp2CwBDYCoUI5SktekK41yPY191jXfOrnFaVO_O4qeN73yFk7LoOtu0uKjw5ubx5-s7NnU9YK8pxXNf2vYCneXGtXby18fo5TZ5ju-C5WpxH8-WQU0FY0GUR5kMOUjDZSRzJYYnaJhxag0THDJLWCSyLLdG5iBlSKSwYHjIQkOtVG9sjK4Oe-vGf-xs2-mt3zXVcFJTSQVRhEdyoNSB-iyc7XXdFKVpek1A71XpvSp9VKVn89XDMbFfZsNd3Q</recordid><startdate>20230619</startdate><enddate>20230619</enddate><creator>Cianci, Salvatore</creator><creator>Blundo, Elena</creator><creator>Tuzi, Federico</creator><creator>Pettinari, Giorgio</creator><creator>Olkowska‐Pucko, Katarzyna</creator><creator>Parmenopoulou, Eirini</creator><creator>Peeters, Djero B. L.</creator><creator>Miriametro, Antonio</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Babinski, Adam</creator><creator>Molas, Maciej R.</creator><creator>Felici, Marco</creator><creator>Polimeni, Antonio</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0977-2301</orcidid><orcidid>https://orcid.org/0000-0002-2017-4265</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-5591-4825</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-6653-3104</orcidid><orcidid>https://orcid.org/0000-0002-6036-7096</orcidid><orcidid>https://orcid.org/0000-0002-5516-9415</orcidid><orcidid>https://orcid.org/0000-0003-0423-4798</orcidid><orcidid>https://orcid.org/0000-0003-0187-3770</orcidid><orcidid>https://orcid.org/0000-0003-4020-369X</orcidid></search><sort><creationdate>20230619</creationdate><title>Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes</title><author>Cianci, Salvatore ; Blundo, Elena ; Tuzi, Federico ; Pettinari, Giorgio ; Olkowska‐Pucko, Katarzyna ; Parmenopoulou, Eirini ; Peeters, Djero B. L. ; Miriametro, Antonio ; Taniguchi, Takashi ; Watanabe, Kenji ; Babinski, Adam ; Molas, Maciej R. ; Felici, Marco ; Polimeni, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2733-6f6c84508a5868f9773924c52ea3750ce1367ccfea8f0884187e0a5434a2e89b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Domes</topic><topic>Emitters</topic><topic>Excitons</topic><topic>heterostructures</topic><topic>Ion irradiation</topic><topic>Liquefaction</topic><topic>Magnetic moments</topic><topic>Materials science</topic><topic>Optics</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>single photon emitters</topic><topic>Strain</topic><topic>two‐dimensional materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Cianci, Salvatore</creatorcontrib><creatorcontrib>Blundo, Elena</creatorcontrib><creatorcontrib>Tuzi, Federico</creatorcontrib><creatorcontrib>Pettinari, Giorgio</creatorcontrib><creatorcontrib>Olkowska‐Pucko, Katarzyna</creatorcontrib><creatorcontrib>Parmenopoulou, Eirini</creatorcontrib><creatorcontrib>Peeters, Djero B. L.</creatorcontrib><creatorcontrib>Miriametro, Antonio</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Babinski, Adam</creatorcontrib><creatorcontrib>Molas, Maciej R.</creatorcontrib><creatorcontrib>Felici, Marco</creatorcontrib><creatorcontrib>Polimeni, Antonio</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cianci, Salvatore</au><au>Blundo, Elena</au><au>Tuzi, Federico</au><au>Pettinari, Giorgio</au><au>Olkowska‐Pucko, Katarzyna</au><au>Parmenopoulou, Eirini</au><au>Peeters, Djero B. L.</au><au>Miriametro, Antonio</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Babinski, Adam</au><au>Molas, Maciej R.</au><au>Felici, Marco</au><au>Polimeni, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes</atitle><jtitle>Advanced optical materials</jtitle><date>2023-06-19</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Monolayers (MLs) of transition‐metal dichalcogenides host efficient single‐photon emitters (SPEs) usually associated to the presence of nanoscale mechanical deformations or strain. Large‐scale spatial control of strain would enhance the scalability of such SPEs and allow for their incorporation into photonic structures. Here, the formation of regular arrays of strained hydrogen‐filled one‐layer‐thick micro‐domes obtained by H‐ion irradiation and lithography‐based approaches is reported. Typically, the H2 liquefaction for temperatures T&lt;32 K causes the disappearance of the domes preventing their use as potential SPEs. Here, it is shown that the dome deflation can be overcome by hBN heterostructuring, that is by depositing thin hBN flakes on the domes. This leads to the preservation of the dome structure at all temperatures, as found by micro‐Raman and micro‐photoluminescence (µ‐PL) studies. Eventually, spatially controlled hBN‐capped WS2 domes show the appearance, at 5 K, of intense emission lines originating from localized excitons, which are shown to behave as quantum emitters here. The electronic properties of the emitters are addressed by time‐resolved µ‐PL yielding time decays of 1–10 ns, and by magneto‐µ‐PL measurements. The latter provide an exciton magnetic moment a factor of two larger than the value observed in planar strain‐free MLs. The success of quantum technologies relies on the capability of producing efficient sources of single photons. 2D materials offer the unique opportunity of having such sources on an atomically thin surface from which photons can be extracted very efficiently. It is shown that building micrometric domes of 2D materials provides spatially ordered and scalable arrays of quantum emitters.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202953</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0977-2301</orcidid><orcidid>https://orcid.org/0000-0002-2017-4265</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-5591-4825</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-6653-3104</orcidid><orcidid>https://orcid.org/0000-0002-6036-7096</orcidid><orcidid>https://orcid.org/0000-0002-5516-9415</orcidid><orcidid>https://orcid.org/0000-0003-0423-4798</orcidid><orcidid>https://orcid.org/0000-0003-0187-3770</orcidid><orcidid>https://orcid.org/0000-0003-4020-369X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-06, Vol.11 (12), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2827191568
source Wiley Online Library Journals Frontfile Complete
subjects Domes
Emitters
Excitons
heterostructures
Ion irradiation
Liquefaction
Magnetic moments
Materials science
Optics
Photoluminescence
Photons
single photon emitters
Strain
two‐dimensional materials
title Spatially Controlled Single Photon Emitters in hBN‐Capped WS2 Domes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Controlled%20Single%20Photon%20Emitters%20in%20hBN%E2%80%90Capped%20WS2%20Domes&rft.jtitle=Advanced%20optical%20materials&rft.au=Cianci,%20Salvatore&rft.date=2023-06-19&rft.volume=11&rft.issue=12&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202953&rft_dat=%3Cproquest_wiley%3E2827191568%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827191568&rft_id=info:pmid/&rfr_iscdi=true