Flat-Field Correction of X-Ray Tomographic Images Using Deep Convolutional Neural Networks

It is proposed that neural networks be used to solve the problem of flat-field correction. A process is described for selecting parameters of a deep convolutional neural network in order to solve the problem of flat-field correction with the instability of an empty beam, training this network, and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Russian Academy of Sciences. Physics 2023-05, Vol.87 (5), p.604-610
Hauptverfasser: Grigorev, A. Yu, Buzmakov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is proposed that neural networks be used to solve the problem of flat-field correction. A process is described for selecting parameters of a deep convolutional neural network in order to solve the problem of flat-field correction with the instability of an empty beam, training this network, and checking its operability on the generated data. The procedure is tested on data obtained with laboratory X-ray and synchrotron sources.
ISSN:1062-8738
1934-9432
DOI:10.3103/S1062873822701684