Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling Limit

We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system. Two low-energy hyperfine states in each of the atoms represent the logical qubit and a Rydberg state acts as an auxiliary state to induce qubit interaction. Utilizing a hybrid quantum-classical optimizer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Heimann, Nicolas, Broers, Lukas, Pintul, Nejira, Petersen, Tobias, Sponselee, Koen, Ilin, Alexander, Becker, Christoph, Mathey, Ludwig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system. Two low-energy hyperfine states in each of the atoms represent the logical qubit and a Rydberg state acts as an auxiliary state to induce qubit interaction. Utilizing a hybrid quantum-classical optimizer, we generate optimal pulse sequences that implement a CNOT gate with high fidelity, for experimentally realistic parameters and protocols, as well as realistic limitations. We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms. We generate optimized strategies that are robust for both the strong-coupling, blockade regime of the Rydberg states, but also for the weak-coupling limit. Thus, we show that Rydberg-based quantum information processing in the weak-coupling limit is a desirable approach, being robust and optimal, with current technology.
ISSN:2331-8422