Rings of finite Morley rank without the canonical base property

We present numerous natural algebraic examples without the so-called Canonical Base Property (CBP). We prove that every commutative unitary ring of finite Morley rank without finite-index proper ideals satisfies the CBP if and only if it is a field, a ring of positive characteristic or a finite dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Loesch, Michael, Palacín, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present numerous natural algebraic examples without the so-called Canonical Base Property (CBP). We prove that every commutative unitary ring of finite Morley rank without finite-index proper ideals satisfies the CBP if and only if it is a field, a ring of positive characteristic or a finite direct product of these. In addition, we also construct a CM-trivial commutative local ring with a finite residue field without the CBP. Furthermore, we also show that finite-dimensional non-associative algebras over an algebraically closed field of characteristic \(0\) give rise to triangular rings without the CBP. This also applies to Baudisch's \(2\)-step nilpotent Lie algebras, which yields the existence of a \(2\)-step nilpotent group of finite Morley rank whose theory, in the pure language of groups, is CM-trivial and does not satisfy the CBP.
ISSN:2331-8422