L1-2-Type Surfaces in 3-Dimensional De Sitter and Anti De Sitter Spaces
Let M s 2 be an orientable surface immersed in the De Sitter space S 1 3 ⊂ R 1 4 or anti de Sitter space H 1 3 ⊂ R 2 4 . In the case that M s 2 is of L 1 -2-type we prove that the following conditions are equivalent to each other: M s 2 has a constant principal curvature; M s 2 has constant mean cur...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2023, Vol.46 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 46 |
creator | García-Martínez, S. Carolina Lucas, Pascual Ramírez-Ospina, H. Fabián |
description | Let
M
s
2
be an orientable surface immersed in the De Sitter space
S
1
3
⊂
R
1
4
or anti de Sitter space
H
1
3
⊂
R
2
4
. In the case that
M
s
2
is of
L
1
-2-type we prove that the following conditions are equivalent to each other:
M
s
2
has a constant principal curvature;
M
s
2
has constant mean curvature;
M
s
2
has constant second mean curvature. As a consequence, we also show that an
L
1
-2-type surface is either an open portion of a standard pseudo-Riemannian product, or a
B
-scroll over a null curve, or else its mean curvature, its Gaussian curvature and its principal curvatures are all non-constant. |
doi_str_mv | 10.1007/s40840-023-01535-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2825839905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825839905</sourcerecordid><originalsourceid>FETCH-LOGICAL-p142w-315b8c183d1ef00dcc5be577a20fbd72b6af878f44f4f6b6c9fe1e5f661351663</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRMNT-AU8Lnldn9ivbY2m1CgEPreclH7uSUpO4mxD896ZG0LkMzPvMMDyE3CLcI0D6ECUYCQy4YIBKKDZekISjASY56EuSAHLNdArqmixjPMJUSnPNMSG7DBlnh6_O0f0QfF66SOuGCratP1wT67bJT3Q7hXXfu0DzpqLrpq__jfbdeemGXPn8FN3yty_I29PjYfPMstfdy2adsQ4lH5lAVZgSjajQeYCqLFXhVJrmHHxRpbzQuTep8VJ66XWhy5V36JTXGoVCrcWC3M13u9B-Di729tgOYXoyWm64MmK1AjVRYqZiF-rm3YU_CsGepdlZmp2k2R9pdhTfJlNdKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825839905</pqid></control><display><type>article</type><title>L1-2-Type Surfaces in 3-Dimensional De Sitter and Anti De Sitter Spaces</title><source>SpringerLink Journals</source><creator>García-Martínez, S. Carolina ; Lucas, Pascual ; Ramírez-Ospina, H. Fabián</creator><creatorcontrib>García-Martínez, S. Carolina ; Lucas, Pascual ; Ramírez-Ospina, H. Fabián</creatorcontrib><description>Let
M
s
2
be an orientable surface immersed in the De Sitter space
S
1
3
⊂
R
1
4
or anti de Sitter space
H
1
3
⊂
R
2
4
. In the case that
M
s
2
is of
L
1
-2-type we prove that the following conditions are equivalent to each other:
M
s
2
has a constant principal curvature;
M
s
2
has constant mean curvature;
M
s
2
has constant second mean curvature. As a consequence, we also show that an
L
1
-2-type surface is either an open portion of a standard pseudo-Riemannian product, or a
B
-scroll over a null curve, or else its mean curvature, its Gaussian curvature and its principal curvatures are all non-constant.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-023-01535-w</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Applications of Mathematics ; Curvature ; Mathematics ; Mathematics and Statistics</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2023, Vol.46 (4)</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4354-9736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-023-01535-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-023-01535-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>García-Martínez, S. Carolina</creatorcontrib><creatorcontrib>Lucas, Pascual</creatorcontrib><creatorcontrib>Ramírez-Ospina, H. Fabián</creatorcontrib><title>L1-2-Type Surfaces in 3-Dimensional De Sitter and Anti De Sitter Spaces</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>Let
M
s
2
be an orientable surface immersed in the De Sitter space
S
1
3
⊂
R
1
4
or anti de Sitter space
H
1
3
⊂
R
2
4
. In the case that
M
s
2
is of
L
1
-2-type we prove that the following conditions are equivalent to each other:
M
s
2
has a constant principal curvature;
M
s
2
has constant mean curvature;
M
s
2
has constant second mean curvature. As a consequence, we also show that an
L
1
-2-type surface is either an open portion of a standard pseudo-Riemannian product, or a
B
-scroll over a null curve, or else its mean curvature, its Gaussian curvature and its principal curvatures are all non-constant.</description><subject>Applications of Mathematics</subject><subject>Curvature</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpNkE1Lw0AQhhdRMNT-AU8Lnldn9ivbY2m1CgEPreclH7uSUpO4mxD896ZG0LkMzPvMMDyE3CLcI0D6ECUYCQy4YIBKKDZekISjASY56EuSAHLNdArqmixjPMJUSnPNMSG7DBlnh6_O0f0QfF66SOuGCratP1wT67bJT3Q7hXXfu0DzpqLrpq__jfbdeemGXPn8FN3yty_I29PjYfPMstfdy2adsQ4lH5lAVZgSjajQeYCqLFXhVJrmHHxRpbzQuTep8VJ66XWhy5V36JTXGoVCrcWC3M13u9B-Di729tgOYXoyWm64MmK1AjVRYqZiF-rm3YU_CsGepdlZmp2k2R9pdhTfJlNdKQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>García-Martínez, S. Carolina</creator><creator>Lucas, Pascual</creator><creator>Ramírez-Ospina, H. Fabián</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><orcidid>https://orcid.org/0000-0002-4354-9736</orcidid></search><sort><creationdate>2023</creationdate><title>L1-2-Type Surfaces in 3-Dimensional De Sitter and Anti De Sitter Spaces</title><author>García-Martínez, S. Carolina ; Lucas, Pascual ; Ramírez-Ospina, H. Fabián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p142w-315b8c183d1ef00dcc5be577a20fbd72b6af878f44f4f6b6c9fe1e5f661351663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Curvature</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Martínez, S. Carolina</creatorcontrib><creatorcontrib>Lucas, Pascual</creatorcontrib><creatorcontrib>Ramírez-Ospina, H. Fabián</creatorcontrib><collection>Springer Nature OA Free Journals</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Martínez, S. Carolina</au><au>Lucas, Pascual</au><au>Ramírez-Ospina, H. Fabián</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L1-2-Type Surfaces in 3-Dimensional De Sitter and Anti De Sitter Spaces</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2023</date><risdate>2023</risdate><volume>46</volume><issue>4</issue><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>Let
M
s
2
be an orientable surface immersed in the De Sitter space
S
1
3
⊂
R
1
4
or anti de Sitter space
H
1
3
⊂
R
2
4
. In the case that
M
s
2
is of
L
1
-2-type we prove that the following conditions are equivalent to each other:
M
s
2
has a constant principal curvature;
M
s
2
has constant mean curvature;
M
s
2
has constant second mean curvature. As a consequence, we also show that an
L
1
-2-type surface is either an open portion of a standard pseudo-Riemannian product, or a
B
-scroll over a null curve, or else its mean curvature, its Gaussian curvature and its principal curvatures are all non-constant.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40840-023-01535-w</doi><orcidid>https://orcid.org/0000-0002-4354-9736</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2023, Vol.46 (4) |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2825839905 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Curvature Mathematics Mathematics and Statistics |
title | L1-2-Type Surfaces in 3-Dimensional De Sitter and Anti De Sitter Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L1-2-Type%20Surfaces%20in%203-Dimensional%20De%20Sitter%20and%20Anti%20De%20Sitter%20Spaces&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Garc%C3%ADa-Mart%C3%ADnez,%20S.%20Carolina&rft.date=2023&rft.volume=46&rft.issue=4&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-023-01535-w&rft_dat=%3Cproquest_sprin%3E2825839905%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825839905&rft_id=info:pmid/&rfr_iscdi=true |