L1-2-Type Surfaces in 3-Dimensional De Sitter and Anti De Sitter Spaces
Let M s 2 be an orientable surface immersed in the De Sitter space S 1 3 ⊂ R 1 4 or anti de Sitter space H 1 3 ⊂ R 2 4 . In the case that M s 2 is of L 1 -2-type we prove that the following conditions are equivalent to each other: M s 2 has a constant principal curvature; M s 2 has constant mean cur...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2023, Vol.46 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
M
s
2
be an orientable surface immersed in the De Sitter space
S
1
3
⊂
R
1
4
or anti de Sitter space
H
1
3
⊂
R
2
4
. In the case that
M
s
2
is of
L
1
-2-type we prove that the following conditions are equivalent to each other:
M
s
2
has a constant principal curvature;
M
s
2
has constant mean curvature;
M
s
2
has constant second mean curvature. As a consequence, we also show that an
L
1
-2-type surface is either an open portion of a standard pseudo-Riemannian product, or a
B
-scroll over a null curve, or else its mean curvature, its Gaussian curvature and its principal curvatures are all non-constant. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-023-01535-w |